Assessment framework for a positive list for captive reptiles in the Netherlands

Part 1: Assessment framework for reptiles

Recent insights into the welfare of animals emphasise the fact that an animal's capacity to be aware of their situation is central to the concept of animal welfare. Welfare is based on the capacity to suffer, experience pleasure, feel pain, etc. (Duncan, 2006; Browning & Veit, 2022). Welfare is threatened if an animal species experiences restrictive conditions that, based on scientific evidence, are not conducive to certain biological characteristics of the animal species. This applies not only to mammals, but to all vertebrates including reptiles (Lambert, Carder & D'Cruze, 2019; Azevedo et al., 2021), birds (Marino, 2017) and fish (Brown, 2015; Mason & Lavery, 2022). Based on this general scientific literature, the Advisory Board has explored the possibility that the assessment framework for reptiles can build on the previously established assessment framework for mammals. As part of this process, the Advisory Board has replaced the biological features specific to mammals by those specific to reptiles (defined here as all non-avian reptiles). For reptiles, these kinds of features can also be considered to be risk factors in terms of the development of welfare problems. The Board realises that welfare problems in reptiles can manifest themselves differently than in mammals. For example, reptiles will very rapidly become passive and lower their metabolism if the environment does not meet the requirements. Although this may be an indication of welfare problems, it must be further substantiated by additional symptoms.

The assessment system uses a binary scale (yes/no) to identify risk factors in reptile species. Risk factors are related to the following two categories of injury and/or distress: 1) hazards to humans (zoonoses or personal injury) and 2) hazards to the animal (animal welfare/animal health). The justification for using these features draws on scientific insights that are general and non-species-specific, as outlined for each risk factor.

Further details of the assessment framework are given later in this chapter. These consist of (in order):

- Glossary of terms;
- Working procedure;
- Assessment framework and risk factors;
- Assessment and assessment chart.

1.1 Glossary of terms

The following definitions clarify the key terms used in this advisory report.

Risk factor: A risk factor is a species-specific trait that typically facilitates the survival of an animal in its natural habitat. If inadequately expressed, due to restrictive conditions, neglect, or excessive human contact, this has limited or significant harmful outcomes for the welfare and/or health of humans or animals. The phrase 'significant harmful outcomes' refers to behavioural abnormalities, health conditions and injuries that have a lasting, permanent, and/or severe impact on the welfare and health of humans or animals. The assessment framework focuses solely on those risk factors that are not applicable to all reptile species.

Risk category: a set of risk factors where the inherent features of an animal entail a variety of interlinked behaviours that serve a common purpose. The impact of risk factors belonging to the same risk category will result in the same type of pathology.

Risk class: the categorisation of animal species based on the number of risk categories in which risk factors have been identified.

1.2 Working procedure

The definitive assessment framework was developed over multiple rounds of iteration:

- 1. Generate ideas about the risk factors that determine the welfare and/or health of animals or humans;
- 2. Group related risk factors into risk categories;
- 3. Draw up a draft assessment framework with risk categories;
- 4. Perform a provisional test of the assessment framework, using thirty animal species (with a sufficient degree of variation in their biology and ecology);
- 5. Based on this test, make the assessment framework more rigorous, both in terms of content and language;
- 6. Carry out a more comprehensive definition of the risk categories and make the assessment framework more rigorous;
- 7. Submit the assessment framework for consultation¹;
- 8. Increase the rigour of the assessment framework by incorporating feedback from the experts that were consulted.

For each identified risk factor:

- A clear definition and explanatory notes have been produced. This ensures that the assessment will have a high level of reproducibility and clarity, regardless of which expert is involved.
- Scientific evidence for adverse effects on the health and welfare of humans and/or animals has been provided.

1.3 Assessment framework and risk factors

The assumption behind a risk-factor-based assessment framework is that every species is adapted to its natural habitat, in terms of behaviour, physiology, and morphology. To achieve optimum performance in their natural environment, animal species have developed species-specific traits to help ensure their survival and reproductive output. Scientific evidence for this can be found in the basic literature on evolutionary behavioural ecology (Davies et al., 2012; Dugatkin, 2013; Alcock, 2013).

Certain conditions of captivity (further referred to as restrictions) are in conflict with these species-specific traits and their plasticity and pose a risk for the welfare and health of animal species. Not every restrictive condition represents a risk *per se*. Thus, whether or not a restriction will actually lead to health or welfare problems depends on the nature and scope of that restriction, as well as on the ability of the species to anticipate, manage, and adapt to it. For instance, it is conceivable that some aspects of the natural, species-specific behavioural repertoire are so important for an animal that it is driven to perform those behaviours, regardless of the functional result. Some snakes, such as racers, actively forage for food in their habitat. Because they live in open habitats, the animals have to cover large distances (Brown & Parker, 1976; Plummer & Congdon, 1994; Mitrovich et al., 2018). Even if they are regularly fed, these species continue to move and forage for food as part of their natural behaviour and regularly incur injuries to the head (rostral trauma) as they push against the walls of the terrarium (Mehler and Bennett, 2003).

The scientific evidence that underpins the assessment framework was drawn from the general literature on animal behaviour, the physiology of stress, and on plasticity and adaptation. In terms of risks to animal welfare, general stress theory (which applies to all vertebrates) indicates that uncontrollable/unpredictable conditions should be regarded as stressors that can severely impact health and welfare (Sapolsky, 2004). Unpredictable and uncontrollable conditions are powerful triggers for physiological stress systems, irrespective of the specific stressor involved (Koolhaas et al., 2014).

¹ https://www.internetconsultatie.nl/toetsingskader huisdieren

The assessment framework is based on the screening of various risk factors that impact the welfare and/or health of animals or humans. These risk factors are clustered into the following categories:

- 1. Human injury/health;
- 2. Food consumption;
- 3. Use of space/safety;
- 4. Temperature;
- 5. Humidity;
- 6. Light spectrum;
- 7. Social behaviour.

1.3.1 Human injury/health

This category contains risk factors associated with an animal species that could pose a threat to human health. These features include risks of zoonoses and injuries with significant harmful outcomes for the welfare and/or health of humans. This risk factor includes chronic infections and/or fatigue, acute danger and mortality risk as a result of venomous animal bites, broken bones, brain injuries, wounds and bruises that may necessitate urgent medical treatment or hospitalisation. Such incidents may significantly impair an individual's ability to perform their normal work for an extended period or permanently, as a result of loss of function or death.

The severe outcomes of these risks on humans are vital considerations in the assessment. The presence of one or more risks in this risk category is sufficient reason to assign the animal species to the highest risk class (H) (see Chapter 2). The following risk factors have been identified:

1. The animal species poses a risk of zoonoses

In its assessment of the risks of zoonoses in mammals, the Advisory Board considered non-alimentary zoonoses only. Accordingly, the system that has been developed does not include zoonoses that can be transmitted to humans or animals through the food chain, as the risks of alimentary zoonoses are managed by means of food safety legislation. In the almost complete absence of knowledge or information about the incidence of zoonoses transmitted by reptiles, the Advisory Board has opted to evaluate individual species based on the zoonotic infections that have been identified for them. Severe zoonoses (EMZO class 4; Havelaar, et al., 2010) that are transmitted along infection pathways that are almost impossible to control (e.g. airborne/aerogenous routes) are classified as a risk. With regard to the Netherlands' populations of domestic/production mammals, there are programmes to control and limit the risk of infection to acceptable levels, both from one animal to another and from animals to humans (zoonoses). These programmes concern the remaining zoonoses, whose dangers can be reduced to accepted reference levels by feasible control measures. For this reason, these other zoonoses play no part in the assessment. However, there are no programmes of this kind available for reptiles. This is why the Advisory Board has decided also to include the risk of zoonoses in its assessment. In general, very few severe zoonoses have been identified in the literature for reptiles, with the exception of West Nile virus, (Ebani et al., 2017; Mitchell, 2011; Mendoza-Roldan et al., 2020). However, reptiles can be affected by parasites and represent a risk through the transmission of Protozoa, Cestoda, Pentastomida, Nematoda, Trematoda and Ixodida (Mendoza-Roldan et al., 2020).

2. The animal species poses a risk of personal injury

To survive in their natural habitats, animal species have developed traits to defend themselves against threats from other members of the same species or from predators, including humans (the 'fight' response) as well as behaviours for evading threats (the 'flight' response). Their use of these traits (either actively or reactively) in conjunction with restrictive conditions and the confrontation with humans, can pose a risk of injury to humans. These risks are determined in part by the animal's size and its method and means of attack, potentially in combination with any (unpredictable) escape behaviours used by the species in question. Scores in this risk category are limited to situations that involve a risk of permanent damage to health, loss of function, or death. Any such incidents will generally require urgent medical treatment or hospitalisation (for broken bones, brain injury, internal trauma, poisoning, cardiac arrest, loss of tissue, etc.) resulting from constriction, scratches, bites, butting, stings or kicks. These incidents have a long-term impact on day-to-day life, and/or may result in long-term loss of function and/or death.

1.3.2 Food consumption

Food is essential for animal life. Evolutionary processes have produced animal species that can vary considerably in the range of food sources on which they are dependent, in their strategies for acquiring such food, and in the degree of specialisation involved. The wrong type of food or presenting food items in the wrong way are also key causes of both physical and psychological welfare problems. The wrong type of food does not only lead to stunted growth (growth abnormalities, deformities; Mehler and Bennett, 2003; Doneley et al., 2017), it also increases susceptibility to infection (Donoghue & McKeown, 1999; Mans & Braun, 2014) and can lead to severe behavioural problems later in life (Mehler and Bennett, 2003; Han & Dingemanse, 2015). The risk factors are based on the extent to which animal species are specialised in their diet and foraging behaviour.

1. The animal species is an herbivorous browser

These animals are not only herbivorous, they also mainly eat leaves, young shoots and fruits of woody plants (e.g. *Uromastyx* or *Iguana*, some tortoises/terrestrial turtles). Herbivores can be classified on a continuous spectrum based on their dietary preferences and the morphological specialisation of their digestive systems. They range from grazers at one end of the spectrum, through intermediate grazers (species that both graze and browse), to exclusive browsers at the other (Donoghue and McKeown, 1999). Browsers, in particular, experience problems if they are unable to browse as much as they need to, if at all. An unbalanced diet due to incorrect levels of vitamins and minerals or poor composition in terms of digestion can lead to vitamin and mineral deficiencies, gastrointestinal problems, weakening, and ultimately death (Donoghue and McKeown, 1999; Raila et al., 2002). This biological feature should, therefore, be included as a risk factor for the animal species in question.

2. The animal species has a keratinous beak (rhamphoteca) or no tooth replacement (acrodont dentition)

Various animal species whose natural plant-based diet is rich in fibre and minerals have a keratinous beak. The beak continues to grow throughout the animal's life to compensate for the mechanical abrasion (grinding, scraping) that occurs when chewing food. The most obvious examples of animal species with keratinous beaks are terrestrial tortoises and turtles (Vitt & Caldwell, 2013). If the food provided causes insufficient wear because it is too soft, then the normal movements of gnawing and chewing may not be adequately stimulated and may not be performed completely. As a result, there is insufficient wear on the surface of the keratinous beak. This leads to an overgrown beak (rhamphotheca overgrowth, Mans, 2013) resulting in inadequate food consumption. Another group of reptiles has an acrodont dentition where the teeth are not replaced (Vitt & Caldwell, 2013; Dosedelova et al., 2016). This group includes agamid lizards, chameleons and spiny-tailed lizards and related species (*Leiolepis*). In these

animals, inappropriate food can cause accelerated wear of the only pair of teeth, ultimately preventing food consumption and causing the animals to starve (Mans, 2013).

3. The animal species has to engage in prolonged foraging

Animals living in the wild often spend a great deal of their time foraging for, locating, and consuming food. Insufficient stimulus for this foraging behaviour can lead to stress, boredom and stereotypic behaviour (especially locomotory stereotypies and pacing; Michaels et al., 2020). This foraging behaviour is often inextricably linked to food consumption. Many species are dependent on food that is widely dispersed and/or concealed. Each item or mouthful only provides a relatively small portion of their daily energy needs. If the animal species experiences conditions that make such foraging behaviour unnecessary or impossible, this can lead to boredom and abnormal behaviour. Boredom can lead to depression-like symptoms or damaging behaviours. The emergence of abnormal behaviour, such as stereotypies, is commonly considered to be a sign of significant deficiencies in the animals' housing or care (Burghardt, 2013).

4. The animal species has an intermittent feeding pattern

Several species, such as boas or species of rattlesnakes, eat very infrequently in the wild, but consume very large prey (Campbell and Brodie, 1992; Schuett et al., 2002; Henderson and Powell, 2007). These species require careful feeding; if they are exclusively fed large prey (with a long interval between feeds), there is a risk of vitamin deficiencies (vitamins B and C used up within several days; Zwart, 2001). However, feeding prey that are too small can have severe consequences following a protracted period of fasting. The costs, in terms of energy, of digestive system upregulation are extremely high (Secor and Diamond, 1995; Goodrich et al., 2024). This can cause rapid weight loss and potentially even death of the animal.

5. The animal species is reliant on a narrow range of specific foods

The diet of some species is so specialised that they are at great risk of being unable to fulfil their dietary needs, resulting in serious nutritional deficiencies. Two examples are *Moloch horridus* and lizards of the genus *Phrynosoma* that exclusively eat specific species of ants, primarily of a single genus (Pianka & Parker, 1975; Withers and Dickman, 1995). Geckos from New Caledonia (*Rhacodactylus spp, Correlophus ciliatus*) mainly consume rotting fruit, supplemented by insects, a diet that is difficult to achieve in captivity (Wilkinson, 2015). Some carnivorous reptiles are genuinely specialised feeders, and will only eat certain lizards, snakes, crabs, or slugs and snails. If this particular prey is absent, this can lead to weight loss, disease, and ultimately death (Donoghue and McKeown, 1999). Many farmed insects used for feeding reptiles in captivity contain too much fat, are deficient in calcium and contain insufficient vitamins (Finke, 2003; Boyer, 2006; van Zanten & Simpson 2021). If only limited species of insects are used as food, there is a risk of an unbalanced diet due to incorrect proportions of vitamins and minerals and insufficient composition can lead to vitamin and mineral deficiencies, unhealthy embryos, 'deterioration', and ultimately death (Laing and Fraser, 1999; Dierenfeld et al., 2002; Wilkinson, 2015).

1.3.3 Use of space/Safety

Animal species make demands on their environment. These demands can differ considerably from one species to another. If these demands are not adequately met, this can lead to severe behavioural problems, reproductive issues, or even physical harm to the animal.

The various demands that animals impose on their environment, as well as the potential problems that may arise for both animals and humans, are specified below.

1. <u>The animal species moves around in its home range and/or defends its territory</u>
When the habitat of an animal is limited, this can inhibit natural patterns of behaviour and

- promote stereotypic behaviour (especially locomotor stereotypies, such as pacing; see e.g. Mason & Mendl, 1997; Mason, 2006; Michaels et al., 2020). In reptiles this can promote stereotypic behaviour (especially locomotory stereotypies such as pacing) and lead to escape behaviour, resulting in self-inflicted injury and infections (Wilkinson, 2015; Rose et al., 2017).
- 2. The animal species relies on a secluded breeding site or hibernation site

 The species constructs a secluded, self-made breeding site for use as a resting place/shelter,
 or as a place in which to raise its young (altricial). If there is a lack of nest substrate or
 sufficient suitable places to lay eggs, this can lead to dystocia (egg binding) and death (Zwart,
 2001) in some snakes, tortoises/turtles and lizards.
- 3. The animal species uses flight as a primary survival strategy or exhibits voluntary tail loss. When exposed to danger, the animal species exhibits a strong flight response or voluntary tail loss (tail autonomy). Animals that resort to flight can also exhibit strong flight responses in captivity. In these cases, animals may crash into walls or obstacles at high speed, potentially resulting in physical trauma (such as broken bones) or death. Animals that resort to flight, such as water dragons and sail-fin dragons (*Physignatus*, *Basiliscus*, *Hydrosaurus*) or monitor lizards exhibit a strong flight response in the face of danger in order to escape predators. In captivity, these animals can exhibit flight responses when startled or if attempts to capture them are poorly executed. In these cases, animals may take flight at high speed or dive from upright structures, potentially resulting in physical trauma (such as broken bones) or death (Warwick, 1990; Garner and Jacobson, 2021). In the case of handling, extreme stress, or high density, other species of lizards and some snakes can shed their tails (Clause and Capaldi, 2006; Hoogmoed et al., 2011). Although the tail will partially regrow, the animal's locomotory capacity may be reduced and reserves of fat stored in the tail will be lost (Maginnin, 2006; Bateman and Flemming, 2009; Emberts et al., 2019).
- 4. The animal species only uses self-constructed burrows/breeding sites

 Species such as girdled lizards, some skinks, and spiny-tailed lizards use burrows they dig
 themselves and have a behavioural need to dig (Branch and Patterson, 1975; Milne and Bull,
 2000; AlRashidi et al., 2021). When the ability to fulfil that need is restricted, this can result in
 overgrown claws, digging stereotypies, and foot injuries (Garner and Jacobson, 2021).
- 5. The animal species is not strictly terrestrial (lives in trees, in water, in the air)
 Some species make use of very specific elements of their environment. Some reptiles live mostly in trees, for example, while others live entirely or partially in the water. Their environments must accommodate these species-specific traits. For tree-dwelling species, the three-dimensional structure of their environment is of great importance. If this structure is inadequate, some large lizards may become trapped and lose their tail (Zwart, 2001). It is important that the structure of the enclosure/depth of the water are such that the animals cannot drown (turtles that drown in shallow water when they land on their back and cannot turn around; exhaustion if there is no land area, see Zwart, 2001).

Dependence on physical environment

All reptiles are dependent on different physical aspects of their environment. To achieve this, they exhibit strong behavioural regulation of the optimum environmental conditions. In other words, reptiles actively seek out the optimum environment in terms of temperature, humidity, and light. With respect to the physical aspects of an animal's environment, a degree of variation in terms of space and time is essential, allowing the animal to seek out the most suitable environmental conditions.

1.3.4. Temperature

All reptiles are poikilotherm and often use behavioural thermoregulation. As such, the metabolism and physiology is almost completely dependent on the ambient temperature. In order to maintain body temperature within certain limits, there may be behavioural thermoregulation and animals have a variety of morphological, physiological and behavioural adaptations (Bicego et al., 2007). If these limits are exceeded, however, and body temperature gets too high (hyperthermia) or too low (hypothermia), essential bodily functions will rapidly deteriorate (Seebacher and Franklin, 2005). Hyperthermia carries a high risk of organ damage. Hypothermia usually causes reduced organ function. Thermoregulatory adaptations differ vastly between species, and are dependent on the climate in which the animal lives and has evolved (Cossins & Bowler, 1987; McNab, 2002; Bicego et al., 2007; Gordon, 1990; Clarke & Rothery, 2008).

- The animal species is not adapted to the temperature in the Netherlands
 Species whose home range is limited to regions such as tropical and/or subtropical climate zones, arctic climate zones, or extremely arid deserts need climate-controlled habitats if they are to survive in the temperate maritime climate of the Netherlands (Zhu et al., 2010). Obligatory tropical (or subtropical) species, such as large tortoises kept outdoors, do not easily tolerate low temperatures. If a heated indoor environment is lacking, this may result in the risk of hypothermia, increased susceptibility to illness, and possibly death (Zwart, 2001; Wilkinson, 2015).
- 2. The animal species has active behavioural thermoregulation
 For behavioural thermoregulation, species often need locations to cool off when the weather is
 too hot, or require warm spots (in the sun) to bask or keep warm. If an animal species is
 unable to fulfil these requirements, it will experience the same outcomes as described in
 section 1.3.4.1. A heated indoor environment for reptiles must enable a species to engage in
 natural behaviour to manage its body temperature. If (partial) temperature gradients
 (horizontal or vertical, depending on the ecology of the species) are lacking, or inappropriate
 sources of heat (wavelength, type of heat source) are used, this can result in reduced growth,
 behavioural problems, a reduced immune response, injury (burns), and death (van Zanten &
 Simpson, 2021; Warwick et al., 2023; Wilkinson, 2015; Zwart, 2001; Suedmeyer, 1995;
 Williams & Jackson, 2016; Nash, 2022).
- 3. <u>The animal species hibernates (non-facultative, not to be confused with a dormant winter period)</u>
 - All animals are affected by the range of rhythmic changes in the outside world such as daynight cycles, seasons and tides. In association with this, a periodicity or biological rhythm is present. This involves certain physiological and behavioural changes that occur at more-or-less regular intervals. To a greater or lesser extent (depending on the species) this adaptive temporal organisation in behaviour and physiology is driven by internal clocks in the animal's central nervous system that are synchronised to external stimuli known as 'zeitgebers' (Rusak, 1981; Takahashi, 2017). Whether being housed at high temperatures in the period when reptiles usually hibernate has a disruptive effect on the animal's physiology and behaviour depends on the species. In some species, being unable to hibernate can disrupt reproduction. Animals of these species require obligate hibernation in order to be able to reproduce the following season. However, in some other species, reproduction does not depend on hibernation. In these cases, hibernation is facultative. In the latter case, it is not known whether being unable to hibernate has a negative impact on survival.

1.3.5. Humidity

The animal species lives in a climate with a humidity that differs significantly from the climate in the Netherlands

Reptiles range from species that occur in extremely arid areas to species that live in or close to water. Even species that live in arid regions, such as desert tortoises (*Gopherus sp.*), make use of burrows in order to counteract the loss of water (Bulova, 2002). A lack of sufficient humidity during the hibernation of garter snakes (*Thamnophis sirtalis*) can significantly affect their further survival (Costanzo, 1989). Reptiles also actively seek out hiding places to prevent dehydration (Dezetter et al., 2023) and this has a direct impact on their temperature tolerance (Herrando-Pérez et al., 2020; Le Galliard et al., 2021). Excessive or insufficient humidity can also cause breathing problems and respiratory diseases (Schumacher, 1997). In conditions of low humidity, shedding problems can develop (Divers & Stahl 2019).

1.3.6. Light spectrum

The animal species lives in a range and habitat characterised by strong exposure to UV light (Ferguson zones 2, 3, 4)

Reptiles can vary significantly in their dependency on UV light in terms of its strength and spectrum (Baines et al., 2016). Many species need UV-B light in order to synthesise vitamin D (Karsten et al., 2009). If insufficient UV light is available, skeletal disorders, impaired fertility, problems in embryogenesis, etc. can occur (Zwart, 1980). Inappropriate UV lighting can also cause eye infections (Wunderlich et al., 2024). In addition, ultraviolet light also plays an important role in communication in some species, such as chameleons (Dollion et al., 2020). Behavioural regulation can also be a factor in this. According to need, species can actively seek out or avoid UV-B light and this need can even be stronger than temperature regulation (Conley and Lattanzio, 2022).

1.3.7. Social behaviour

Virtually all animal species exhibit some degree of social behaviour (social interactions between members of the same species, such as mother-young interactions, play, territorial behaviour, dominance & aggressive behaviour and sexual behaviour) and there are complex social structures governing members of the same species (ranging from egalitarianism (equality) to strictly despotic (dominant), hierarchical structures). The type of social structure exhibited by a species can determine whether any deviations from its typical conditions (such as highly territorial species being kept in groups) may lead to severe welfare problems due to persistent aggression. Animals that naturally exhibit solitary and territorial behaviour can undergo severe pathophysiological changes, including stomach ulcers, cardiovascular problems, and immunodeficiency (or even death) if individuals are forced to live socially without adequate opportunities to hide (Korzan & Summers, 2021).

- 1. The animal species has a linear or despotic dominance hierarchy
 Either the dominance hierarchy or social ranking covers all members of the group (linear), or
 all members of the group are subordinate to the alpha member (dominant) and there is little
 or no ranking among the other members. When several males are housed together or new
 individuals are introduced to a group, this increases the likelihood of fights, injuries, predation,
 and death (Warwick et al., 2023; Zwart, 2001). A dominance hierarchy can lead to competition
 for resources (food, water, heat sources), preventing or limiting subordinate animals' access to
 these and increasing the chance of pathologies and death (Warwick et al., 2023; Wilkinson,
 2015).
- The animal species (periodically) forms monogamous pairs
 Some species are highly selective in their choice of partner. This occurs in Australian skinks

(*Egernia* & *Tiliqua* sp.; Chapple, 2003), various species of lizards, and some crocodiles (Wittenberger & Tilson, 1980). This behaviour can increase the chance of intra-species aggression and even lead to death (Gardner et al., 2002; Chapple and Keogh, 2005).

1.3.8. Insufficient information about an animal species

In situations where insufficient information is available to assess a given animal species against some or all of the risk factors, a literature search is conducted to find details about closely related species within the same genus or family. Here, the term 'closely related' refers to animal species that share similar morphological and/or ecological traits. If literature on comparable species is available, its relevance to the animal species being assessed must be thoroughly justified and substantiated. If no literature is available for closely related species, a statement will be made to this effect.

Assessment and assessment chart

As individual components of the same risk category, risk factors cannot be compared to one another. Risk factors cannot be weighed (i.e. one risk factor is worse than another) or added up, for the following reasons:

- In order to determine the relative severity of different risk factors, it must be possible to assign weights to them. The process of assigning weights to risk factors cannot be scientifically substantiated. The scientific theory for indicating the gravity, severity, and duration of a risk factor is still in its infancy, so it is not yet usable for the assessment framework.
- The number of risk factors in a risk category that have check marks placed against them is immaterial, the physiological consequences for a species remain the same. Regardless of whether food is unavailable or of poor quality, or if there are dental issues that prevent consumption, the resulting impact in terms of the risk category remains unchanged. Thus, it is immaterial whether check marks have been placed against one or more risk factors within a risk category.

Nevertheless it is possible to add up risk categories, as the scientific literature shows that stress protocols in which several goals are compromised lead to more problems for the animal (welfare compromises). The categories are juxtaposed, since there is no established, objective unit of measurement that can be used to assign weights to risk categories, as the relevant theory is still in its infancy.

Scoring on multiple risk categories leads to an accumulated complex burden and, consequently, to an increased risk of health and welfare problems for a given animal species.

Further clarification of the assessment chart

As components of these risk categories, risk factors are not assigned individual weights. The total 'welfare costs' stemming from human-induced disturbances cannot be simply aggregated. In theory, it is possible to develop a unit of measurement based on an animal's stress response to human-induced disturbance. In practice, however, this is impossible, due to major discrepancies in the existing literature with respect to the type, duration, intensity and background involved (wild, captive, laboratory; Dickens and Romero, 2013). Work to create an 'Allostatic load index' for wild animals is still in its infancy (Edes et al., 2018). Allostatic load is regarded as a metric for the overall toll of chronic exposure to heightened or fluctuating endocrine or neural responses resulting from persistent or recurring stress. Although the concept of 'Allostatic load' could theoretically be extended to include reptiles (Korte et al., 2005), there is currently insufficient scientific evidence to justify this. As a result, a thorough assessment of the various risk factors is

not feasible, and the gravity of the severity and duration of animal distress cannot be established with complete scientific certainty.

It makes no difference to an animal species whether one or more risk factors apply within a given risk category², the physiological impacts it experiences remain comparable (Bicego et al., 2007). This is evident, for instance, in the case of the 'thermoregulation' goal, which involves maintaining body temperature within specific limits. This will be compromised if an animal species is insufficiently adapted to the temperate maritime climate of the Netherlands, and if they lack access to cooling facilities, for example, or are disturbed during hibernation. Analogous reasoning applies to the other risk categories, linked to other needs. Hence, it does not matter whether one or more risk factors apply to the animal species – the biological need cannot be achieved and the physiological impact on the species remains the same.

For the aforementioned reasons, the assessment of an animal species is predicated upon the scoring of risk categories rather than on individual risk factors.

In an animal species, if hazards are discovered in multiple risk categories, this precludes the simultaneous achievement of many needs, not just one. Scientific studies involving stress protocols in experimental animals show that when multiple needs are compromised, this causes greater harm to the health and welfare of the animal species in question. The scientific literature uses the concepts of 'Chronic Mild Stress Model' and 'resource allocation' to explain this. For example, studies that place many of an animal's needs under stress (e.g. nutrition, thermoregulation, and rest), also known as the Chronic Mild Stress Model, have proven to be extremely effective in eliciting the symptoms of depression, for example (Willner 2017). Other studies have shown that efforts by animals to adapt to restrictive conditions can adversely impact biological processes that are vital to the preservation of optimal health (Glazier, 2009b). This is also known as 'resource allocation'. Resource allocation describes how available energy and resources are distributed between various essential life processes, body structures, and tissues (Glazier, 2009a).

As in the case of risk factors, the Advisory Board has no established objective unit of measurement that can be used to assign weights to risk categories because the relevant theory is still in its infancy. To avoid that subjectivity, all risk categories are weighed equally and are considered to be juxtaposed. The Advisory Board concludes that the simultaneous exposure of an animal species to multiple risk categories leads to an accumulated complex burden and, consequently, to an increased risk of health and welfare problems for a given animal species.

Assessment chart

This leads to the following assessment chart and risk classes:

 $^{^{2}}$ a set of risk factors where the inherent features of animal species entail a variety of interlinked behaviours that serve a common purpose.

ANIMAL SPECIES:	In Dutch		
English name:			
Genus:			
Subgenus:			
Species:			
Wild/Highly domesticated:			
A cross between the following parent species:			
HUMAN INJURY/HEALTH (LG)			
LG1	The animal species poses a risk of zoonoses, which in humans lead to death or chronic infections and/or fatigue, resulting in permanent impairment in daily life.		
LG2	The animal species poses a risk of personal injury, necessitating prompt and/or prolonged medical care for injuries caused by biting, butting, kicking, stinging or scratching (such as broken bones, brain injury, internal trauma and bite wounds resulting in disfigurement), which can result in long lasting impairment in daily life or even death.		
FOOD CONSU	MPTION (V)		
V1	As an herbivorous browser, the animal species is at risk of failing to fulfil its essential nutritional requirements, which can lead to the development of vitamin and mineral deficiencies, gastrointestinal issues, physical deterioration (wear and tear) and, in the worst case scenario, death or comparable outcomes.		
V2	The animal species has a keratinous beak (rhamphoteca) or no tooth replacement (acrodont dentition), leading to the danger of an overgrown rhamphoteca if the food is not properly abrasive or there is excessively rapid wear to the dentition. This results in reduced food consumption, loss of body condition and, in the worst case scenario, death or comparable outcomes.		
V3	The animal species needs to engage in prolonged foraging each day, which involves seeking and/or burying food (digging). There is a risk of developing stereotypic or harmful behaviours or comparable outcomes if the foraging behaviour cannot be expressed sufficiently, if at all. Significant deviations in the size of prey offered can result in serious nutritional deficiencies.		
V4	The animal species has an intermittent feeding pattern leading to the danger of nutritional deficiencies if the prey size does not match the natural choice of prey.		
V5	The animal species is entirely reliant on a narrow bandwidth of specific foods (monophagous, extremely specialised feeder) with the risk of developing gastrointestinal disorders, nutritional deficiencies, cachexia (extreme thinness), and ultimately death if nutritional requirements are not met.		
USE OF SPACE / SAFETY (R)			
R1	The animal species moves around in its home range and/or defends its territory, which can lead to the development of stereotypic behaviour or comparable outcomes if this behaviour cannot be sufficiently expressed, if at all.		
R2	The animal species relies on a secluded breeding site for use as a resting place/shelter, without which there is a risk of aggressive or stereotypic behaviour, anxiety or comparable outcomes.		
R3	The animal species uses flight as a primary survival strategy. If these animals are disturbed, there is a risk of capture myopathy (muscle damage as a result of extreme exertion, struggling or stress), trauma, broken bones, death or comparable outcomes.		

R4	The animal species only uses self-dug burrows/home-made breeding sites, so there is a risk that the lack of an opportunity to dig will result in digging stereotypies or comparable outcomes.		
R5	This animal species is not exclusively terrestrial (lives in trees, in water, or in the air). However, if there are insufficient opportunities to live in habitats other than on land, it is at risk of developing stereotypies or death.		
TEMPERATURI			
T1	The animal species is not adapted to the average temperature in the Netherlands, so it is vulnerable to hypothermia, hyperthermia, respiratory illnesses, heightened susceptibility to disease, and death.		
T2	The animal species has active behavioural thermoregulation. If there is no possibility for the animal to choose an optimal microclimate, there is a risk of hypothermia, hyperthermia, heightened susceptibility to disease, and death.		
Т3	The animal species hibernates (non-facultatively, not to be confused with winter dormancy) with the risk of metabolic disorders and death if disturbed.		
HUMIDITY			
L1	The animal species has a habitat with a humidity that differs significantly from the climate in the Netherlands.		
LIGHT SPECTRUM			
UV1	The animal species lives in a r light (Ferguson zones 2, 3, 4)	range and habitat characterised by strong exposure to UV	
SOCIAL BEHAVIOUR (S)			
S1	The animal species has a (periodic) paired monogamous lifestyle and if this lifestyle is not respected, there is a risk of aggression, intra-species fighting, stress-related diseases and death or comparable outcomes.		
S2	The animal species has a linear or despotic dominance hierarchy, and if this lifestyle is not respected, there is a risk of aggression, intra-species fighting, stress-related diseases and death or comparable outcomes.		

Risk classes

Based on the risk category scores, an animal species will be placed in a higher risk class if it has a positive score in multiple risk categories. Classification into risk classes A to H is a scale that represents the level of difficulty of keeping the animal species in a safe and animal-friendly way.

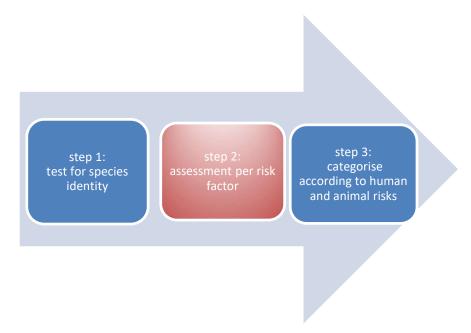
For instance, risk class A indicates that risk factors were not identified in any of the seven risk categories. This means that keeping members of these species in the Netherlands is not hazardous to the welfare and/or health of humans or animals.

Risk class H comprises animal species for which one or more risk factors have been identified in the 'human health' risk category and/or in six 'animal welfare/animal health' risk categories. Keeping members of these species in the Netherlands poses a hazard to human health and/or involves a very large number of hazards to the welfare and/or health of animals.

The Advisory Board views the 'human injury/health' risk category (LG1, LG2 in the assessment table) as a vital consideration for society as a whole and recommends that the animal species that score in this risk category should be automatically assigned to the highest risk class (H).

Step-by-step assessment and classification into risk classes

This chapter shows how the assessment chart is used to perform a step-by-step assessment, after which the animals are categorised into different risk classes based on the outcome.


a. Advisory Board

The assessment will be carried out by the Advisory Board supported by several members of staff in identifying recent scientific source material. The availability of reliable and up-to-date scientific source material is essential, both for the assessment and for the discussion with the experts.

b. Step-by-step assessment

A step-by-step process is used to assess the risks and to classify the animal species by risk class.

The specified steps are as follows:

STEP 1.

First, two experts determine (independently of one another) whether the animal species under assessment can be considered highly domesticated and if there are highly domesticated populations within the species that justify using the 'forma domestica' as a reference for this particular population, rather than the original wild species (see Nijenhuis & Hopster, 2018). When crossbred with highly domestic animals, the risk class of the highest scoring parent species is retained for up to the fifth generation, regardless of whether that parent species was wild or highly domesticated. In doing so, the committee is complying with the European scientific consensus expressed in CITES, which states that crosses retain features from the parent species for five generations (EU Regulation No. 1320/2014). In situations where crosses between wild and highly domesticated animals have been conducted for six or more generations within a species, an assessment is made to determine if the cross in question can generally be regarded as highly domesticated and, if so, whether the 'forma domestica' should be used as a reference.

STEP 2.

Step 2 also involves two experts who (independently of one another) perform a screening based on risk factors that impact animal welfare/animal health and human and animal injury/health according to the chart, as shown in section 1.4. For the purposes of this screening, the Board members use reliable scientific sources (as outlined in Chapter 3), which provide a joint foundation for the assessment. Wherever screening for risk factors produces different results or raises questions, any differences in interpretation are specified, definition problems clarified, and arguments exchanged between the assessors. Afterwards, the animal species is reassessed using the assessment chart. This process is meticulously documented, to ensure that the final decisions are transparent and comprehensible.

STEP 3.

Step 3 specifies the allocation of the assessed species to one of eight risk classes (A-H). The categorisation into risk classes is determined by the number of risk categories that include one or more risk factors.

Reliable sources

Articles published in peer-reviewed journals (known as primary literature) are considered reliable sources (Nordell & Valone, 2017). These publications can be accessed through the bibliographic databases used by university libraries. The most relevant of these are Web of Science, CAB Abstracts, Biological Abstracts, Zoological Record and Google Scholar. Aside from this primary literature, other reliable sources include reference works, journal articles, and reports that contain references to primary literature, as well as dissertations. The prerequisite for this second category of sources is that autonomy must be ensured (in other words, there must be no affiliation with a company/interested party or financial gain).

Peer review is defined as "a process of subjecting an author's scholarly work, research or ideas to the critical scrutiny of others who are experts in the same field" (Kelly et al., 2014). Peer review primarily functions as a filter, ensuring that only sufficiently robust scientific research is published. This is achieved by assessing the validity, significance and originality of the study. Additionally, peer review is designed to enhance and ensure the quality of manuscripts that are deemed suitable for publication. Publications in peer-reviewed journals, by means of a systematic classification in which research and analysis methods are transparent and comprehensible, enabling others to reproduce the study.

References

- AlRashidi M., M. Abdelgadir, and M. Shobrak Habitat selection by the Spiny-tailed lizard (Uromastyx aegyptia): A view from spatial analysis. Saudi Journal of Biological Sciences 28 (2021) 5034–5041
- Alcock, J. 2013. Animal Behaviour an Evolutionary Approach. Sinauer Associates Inc., Oxford University Press, Cary, USA, 522 p..
- Azevedo, A.; Guimarães, L.; Ferraz, J.; Whiting, M.; Magalhães-Sant'Ana, M. Pet: Reptiles—Are We Meeting Their Needs? Animals 2021, 11, 2964.
- Baines F, Joe Chattell, James Dale, Dan Garrick, Iri Gill, Matt Goetz, Tim Skelton and Matt Swatman: How much UV-B does my reptile need? The UV-Tool, a guide to the selection of UV lighting for reptiles and amphibians in captivity. Journal of Zoo and Aquarium Research 4(1) 2016.
- Bateman P.W & P. A. Fleming: To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. Journal of Zoology 277(2009) 1–14
- Bicego K.C., Barros R.C. & Branco LG., 2007. Physiology of temperature regulation: comparative aspects. Comp Biochem Physiol A Mol Integr Physiol. 147(3):616-39
- Boyer T.H.: Chapter 59: Hypovitaminosis A and Hypervitaminosis A. In Reptile medicine and surgery (2nd Ed). 2006 Pp.831-835.
- Branch W.R. and Rod W. Patterson: Notes on the Ecology of the Giant Girdled Lizard, Cordylus giganteus. Journal of Herpetology, Oct. 27, 1975, Vol. 9, No. 4 (Oct. 27, 1975), pp. 364-366
- Brown W.S, and William S. Parker: Movement Ecology of Coluber constrictor near Communal Hibernacula. Copeia, May 17, 1976, Vol. 1976, No. 2 (May 17, 1976), pp. 225-242
- Brown C.: Fish intelligence, sentience and ethics. Anim Cogn (2015) 18:1-17
- Browning H. & Walter Veit (2022) The sentience shift in animal research, The New Bioethics, 28:4, 299-314
- Bulova S.J.: How temperature, humidity, and burrow selection affect evaporative water loss in desert tortoises. Journal of Thermal Biology 27 (2002) 175–189
- Burghardt G.M.: Environmental enrichment and cognitive complexity in reptiles and amphibians: Concepts, review, and implications for captive populations. Applied Animal Behaviour Science 147 (2013) 286–298
- Campbell, J.A. and Brodie E.D.Jr. 1999. Biology of pitvipers. Selva, Texas. 467 Pp.
- Chapple, D.G. 2003. Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetological Monographs 17: 145–180
- Chapple DG, Keogh JS. (2005). Complex mating system and dispersal patterns in a social lizard, Egernia whitii. Molecular Ecology, 14(4), 1215–1227.
- Clarke, A. & Rothery, P. 2008. Scaling of body temperature in mammals and birds. Functional Ecology 22.1: 58–67.
- Clause AR, Capaldi EA. 2006. Caudal autotomy and regeneration in lizards. J. Exp. Zool. 305A:965–973.
- Conley DA and Matthew S. Lattanzio: Active regulation of ultraviolet light exposure overrides thermal preference behaviour in eastern fence lizards. Functional Ecology. 2022; 36: 2240–2250
- Cossins, Andrew R.& K. Bowler, 1987. Temperature biology of animals. New York: Chapman and Hall.
- Costanzo, J. P. 1989. Effects of humidity, temperature, and submergence behavior on survivorship and energy use in hibernating garter snakes, Thamnophis sirtalis. Can. J. Zool. 67: 2486 -2492.
- Davies, N.B., Krebs J.R. & S.A. West, 2012. An Introduction to Behavioural Ecology, 4th Edition. Wiley-Blackwell, 505 p.
- Dezetter M., Jean-François Le Galliard and Olivier Lourdais. Behavioural hydroregulation protects against acute efects of drought in a dry-skinned ectotherm. Oecologia (2023) 201:355–367.
- Dickens, M.J, & Romero, L.M., 2013. A consensus endocrine profile for chronically stressed wild animals does not exist. General and Comparative Endocrinology 191: 177–189
- Dierenfeld ES, Edward B. Norkus, Kathryn Carroll and Gary W. Ferguson. Carotenoids, Vitamin A, and Vitamin E Concentrations During Egg Development in Panther Chameleons (Furcifer pardalis). Zoo Biology 21:295–303 (2002)

- Divers, S.J., and Stahl, S.J. (2019) Reptile and Amphibian Medicine and Surgery, 3rd ed., St Louis MO, Saunders Elsevier.
- Dollion AY, Herrel A, Marquis O et al. (2020) The colour of success: does female mate choice rely on male colour change in the chameleon Furcifer pardalis? J Exp Biol 223:jeb224550. https://doi.org/10.1242/jeb.224550
- Doneley, Bob, Monks, Deborah, Johnson, Robert, and Carmel, Brendan ed.(2017). Reptile medicine and surgery in clinical practice. Hoboken, NJ United States: Wiley Blackwell.https://doi.org/10.1002/9781118977705
- Donoghue, S. and S. McKeown Nutrition of Captive Reptiles. In: Veterinary Clinics of North America: Exotic Animal Practice, Vol. 2. Issue 1, January 1999, P. 69-91. https://doi.org/10.1016/S1094-9194(17)30140-8
- Hana Dosedelov, Katerina Stepankova, Tomas Zikmund, Herve Lesot, Jozef Kaiser, Karel Novotny, Jan Stembrek, Zdenek Knotek, Oldrich Zahradncek and Marcela Buchtova: Age-related changes in the tooth–bone interface area of acrodont dentition in the chameleon. J. Anat.(2016) 229, pp. 356—368.
- Dugatkin, L.A., 2013. Principles of Animal Behavior. W. W. Norton & Company, Inc.,, New York, USA, 627 p.
- Duncan IJH. The changing concept of animal sentience. Applied Animal Behaviour Science 100 (2006) 11–19
- Ebani VV. Domestic reptiles as source of zoonotic bacteria: A mini review. Asian Pacific Journal of Tropical Medicine 2017; 10(8): 723–728
- Edes, A.N., Wolfe, B.A. & Crews, D.E., 2018. Evaluating allostatic load: a new approach to measuring long-term stress in wildlife. Journal of Zoo and Wildlife Medicine 49(2): 272–282.
- Emberts Z, Ignacio Escalante and Philip W. Bateman. The ecology and evolution of autotomy. Biol. Rev.(2019), 94, pp. 1881–1896
- Finke MD. Gut Loading to Enhance the Nutrient Content of Insects As Food for Reptiles: A Mathematical Approach. Zoo Biology 22:147–162 (2003)
- Gardner MG, Bull CM, Cooper SJ, Duffield GA. (2002). High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii. Molecular Ecology, 11(9), 1787–1794.
- Garner MM and Jacobson ER. 2021 Diseases and pathology of reptiles Vol.2 Noninfectious diseases and pathology of reptiles. CRC press
- Glazier, DS. 2009a Trade offs. Chapter in Resource allocation Theory Applied to Farm Animal Production CABI.
- Glazier, D.S. 2009b. Trade-offs. In "Resource allocation theory applied to farm animal production, W.M. Rauw (Ed.), Wallingford, UK, CABI Publishing, p 44-60.
- Goodrich HR, Wood CM, Wilson RW, Clark TD Last KB and Wang T. 2024. Specific dynamic action: the energy cost of digestion or growth? Journal of Experimental Biology (2024) 227, jeb246722. doi:10.1242/jeb.246722
- Gordon CJ., 1990. Thermal Biology of animals. Physiol Behav. 47:963-991.
- Han CS and Dingemanse NJ, 2015. Effect of diet on the structure of animal personality. Frontiers in zoology 12: s5. https://doi.org/10.1186/1742-9994-12-S1-S5
- Havelaar A.H., van Rosse F., Bucura C., Toetenel M.A., Haagsma J.A., et al., 2010. Prioritizing Emerging Zoonoses in The Netherlands. PLoS One 5(11): e13965. doi:10.1371/journal.pone.0013965.
- Henderson RW & Powell R, 2007 Natural History of West Indian Reptiles and Amphibians. University Press of Florida, Gainsville USA
- Herrando-Pérez, S., C. Monasterio, W. Beukema, V. Gomes, F. Ferri Yáñez, D. Vieites, L. Buckley, and M. Araújo (2020). Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation. Functional Ecology. 34. 10.1111/1365-2435.13507.
- Hoogmoed MS, Sauer Avilla-Pires TC. 2011. A case of voluntary tail autotomy in the snake Dendrophidion dendrophis (Schlegel, 1837) (Reptilia: Squamata: Colubridae). Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., Belém, 6: 113-117
- Karsten KB, Ferguson GW, Chen TC, Holick MF. 2009. Panther Chameleons, Furcifer pardalis, Behaviorally Regulate Optimal Exposure to UV Depending on Dietary Vitamin D3 Status. Physiological and Biochemical Zoology 82(3):218–225
- Kelly, J., Sadeghieh, T, Khosrow, A., 2014. Peer review in scientific publications: benefits, critiques, & a survival guide. J. Int. Fed. of Clinical Chemistry and Laboratory Medicine, Volume 25 (3):227-243
- Korte, S.M., Koolhaas, J.M., Wingfield, J.C. & McEwen, B.S., 2005. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev. 29(1): 3-38

- Korzan, W. J., & Summers, C. H. (2021). Evolution of stress responses refine mechanisms of social rank. *Neurobiology of stress*, *14*, 100328.
- Laing CJ, and Frazer DR 1999. The vitamin D system in iguanian lizards.

 Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. Volume 123, Issue 4, August 1999, Pages 373-379
- Lambert H, Carder G, D'Cruze N. 2019. Given the Cold Shoulder: A Review of the Scientific Literature for Evidence of Reptile Sentience. Animals 2019, 9, 821; doi:10.3390/ani9100821
- Le Galliard J-F, Rozen-Rechels D, Lecomte A, Demay C, Dupoué A, Meylan S (2021) Short-term changes in air humidity and water availability weakly constrain thermoregulation in a dryskinned ectotherm. PLoS ONE 16(2): e0247514. https://doi.org/10.1371/journal.pone.0247514
- Maginnis TL, 2006. The costs of autotomy and regeneration in animals: a review and framework for future research. Behavioral Ecology. doi:10.1093/beheco/arl010
- McNab, B.K., 2002. Physiological ecology of vertebrates: A view from energetics. Journal of Mammalogy. 84(2):774–775
- Mans C, 2013. Clinical Update on Diagnosis and Management of Disorders of the Digestive System of Reptiles. Veterinary Clinics: Exotic Animal Practice 22: 141-162.
- Mans C & Braun J, 2014. Update on nutritional disorders of captive reptiles. Veterinary Clinics: Exotic Animal Practice 17: 369-395.
- Marino L, 2017. Thinking chickens: a review of cognition, emotion, and behavior in the domestic chicken. Anim Cogn (2017) 20:127–147 DOI 10.1007/s10071-016-1064-4
- Mason, G. J., 2006. Stereotypic behaviour: fundamentals and applications to animal welfare and beyond. In: Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare, 2nd edn (eds G. Mason and J. Rushen), CABI-Publishers, pp: 325-356
- Mason GJ & Mendl M, 1997. <u>Do the stereotypies of pigs, chickens and mink reflect adaptive species differences in the control of foraging?</u> Applied Animal Behaviour Science e 53: 45-58.
- Mason GJ and Lavery JM. 2022. What Is It Like to Be a Bass? Red Herrings, Fish Pain and the Study of Animal Sentience. Frontiers in Veterinary Science. doi: 10.3389/fvets.2022.788289
- Mehler SJ and Bennet RE, 2003 Oral, dental, and beak disorders of reptiles. Veterinary Clinics. Exotic animal practice 6:477-503
- Mendoza-Roldan JA, Modry D, Otranto D. 2020. Zoonotic Parasites of Reptiles: A Crawling Threat. Trends in Parasitology 36: 8. https://doi.org/10.1016/j.pt.2020.04.014
- Michaels CJ, Gini BF, Clifforde L. 2020. A persistent abnormal repetitive behaviour in a false water cobra (Hydrodynastes gigas). Animal Welfare 29: 371 378. DOI: https://doi.org/10.7120/09627286.29.4.371
- Milne T, and Bull CM, 2000. <u>Burrow choice by individuals of different sizes in the endangered pygmy blue tongue lizard Tiliqua adelaidensis</u>. Biological conservation 95: 295-301
- Mitchell MA, 2011. Zoonotic diseases associated with reptiles and amphibians: an update. Veterinary Clinics: Exotic animal practice. 14: 439-456
- Mitrovich MJ, Diffendorfer JE, Brehme CS, Fisher RN, 2018. Effects of urbanization and habitat composition on site occupancy of two snake species using regional monitoring data from southern California. Global Ecology and Conservation 15:e00427. https://doi.org/10.1016/j.gecco.2018.e00427
- Nash S, 2022. The behavioural biology of captive reptiles. In: The Behavioural Biology of Zoo Animals. CRC press.
- Nijenhuis, F. & Hopster H., 2018. Gedomesticeerd?; begripsomschrijving en beoordelingskader toegepast voor het rendier en de zeboe. Wageningen Livestock Research, Rapport 1102, Wageningen.
- Nordell, S.E., Valone, T.J., 2017. Animal Behaviour; Concepts, Methods and Applications. Oxford University Press, New York. 458 p.
- Pianka ER & Parker WS, 1975. Ecology of Horned Lizards: A Review with Special Reference to Phrynosoma platyrhinos. Copeia 1975: 141-162.
- Plummer & Congdon, 1994. Radiotelemetric Study of Activity and Movements of Racers (Coluber constrictor) Associated with a Carolina Bay in South Carolina. Copeia 1994: 20-26
- Raila, J., Schuhmacher, A., Gropp, J., & Schweigert, F. J. (2002). Selective absorption of carotenoids in the common green iguana (Iguana iguana). *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 132(2), 513-518.
- Rose, P.E., S.M. Nash and L.M. Riley. To pace or not to pace; A review of what abnormal repetitive behavior tells us about zoo animal management. In: Journal of Veterinary Behavior 20 (2017) 11 21
- Rusak, B., 1981. Vertebrate behavioral rhythms. In: Handbook of behavioral neurobiology. FA King (ed) Vol 4: Biological Rhythms. Ed J. Aschoff. New York & London. Plenum Press, pp. 183-205.
- Sapolsky, RM. 2004. Why zebras don't get ulcers: The acclaimed guide to stress, stress-related diseases, and coping-now revised and updated. St. Martin's Press. New York.

- Schuett, G.W., S.L. Carlisle, A.T. Holycross, J.K. O'Leile, D.L. Hardy Sr., E.A. Van Kirk, W.J. Murdoch (2002) Mating system of male Mojave rattlesnakes (*Crotalus scutulatus*): seasonal timing of mating, agonistic behavior, spermatogenesis, sexual segment of the kidney, and plasma sex steroids. In: G.W. Schuett, M. Höggren, M.E. Douglas, H.W. Greene (Eds.), Biology of the Vipers, Eagle Mountain, Eagle Mountain, Utah, pp. 515-531
- Schumacher, J. (1997, October). Respiratory diseases of reptiles. In *Seminars in Avian and Exotic Pet Medicine* (Vol. 6, No. 4, pp. 209-215). WB Saunders.
- Secor, S. M., & Diamond, J. (1995). Adaptive responses to feeding in Burmese pythons: pay before pumping. *Journal of Experimental Biology*, 198(6), 1313-1325.
- Seebacher, F., & Franklin, C. E. (2005). Physiological mechanisms of thermoregulation in reptiles: a review. *Journal of Comparative Physiology B*, 175, 533-541.
- Silvestre, A. M. (2014). How to assess stress in reptiles. *Journal of Exotic Pet Medicine*, 23(3), 240-243.
- Suedmeyer, W. K. (1995, January). Noninfectious diseases of reptiles. In *Seminars in Avian and Exotic Pet Medicine* (Vol. 4, No. 1, pp. 56-60). WB Saunders.
- Takahashi, J.S. 2017. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet.164-179.
- van Zanten, T. C., & Simpson, S. C. (2021). Managing the health of captive groups of reptiles and amphibians. *Veterinary Clinics: Exotic Animal Practice*, 24(3), 609-645.
- Vitt, L.J. and J.P. Caldwell (2013) *Herpetology*. An Introductory Biology of Amphibians and Reptiles. Book Fourth Edition. Academic Press.
- Warwick, C., Arena, P.C., & G.M. Burghardt (Eds.). (2023). *Health and welfare of captive reptiles*. Second edition. Springer Nature Switzerland AG 1995, 2023.
- Warwick, C. (1990). Reptilian ethology in captivity: Observations of some problems and an evaluation of their aetiology. *Applied Animal Behaviour Science*, 26(1-2), 1-13.
- Warwick C., P. Arena, S. Lindley, M. Jessop and C. Steedman. Assessing reptile welfare using behavioural criteria. In: In Practice, March 2013 Vol. 35, p. 123-131
- Wilkinson, S. L. (2015). Reptile wellness management. *Veterinary Clinics: Exotic Animal Practice*, 18(2), 281-304.
- Williams, D. L., & Jackson, R. (2016). Availability of information on reptile health and welfare from stores selling reptiles. Open Journal of Veterinary Medicine, 2016, 6: 59-67
- Willner, Paul, 2017. The chronic mild stress (CMS) model of depression: History, evaluation and usage Neurobiol Stress; Feb; 6: 78–93
- Wittenberger, J. F., & Tilson, R. L. (1980). The evolution of monogamy: hypotheses and evidence. *Annual review of ecology and systematics*, 11, 197-232.
- Withers, P. & C. Dickman 1995 The role of diet in determining water, energy and salt intake in the thorny devil Moloch horridus (Lacertilia: Agamidae). J. of the Royal Society of Western Australia 78(1): 3-11.
- Wunderlich, S., Griffiths, T., & Baines, F. (2024). UVB-emitting LEDs for reptile lighting: Identifying the risks of nonsolar UV spectra. *Zoo Biology*, *43*(1), 61-74.
- Zhu, W.L., Zhang, L., Wang, Z.K., 2010. Thermogenic characteristics and evaporative water loss in the tree shrew (Tupaia belangeri). J. Therm. Biol. 35: 290-294.
- Zwart, P. (1980). Nutrition and nutritional disturbances in reptiles. In *Proceedings of European Herpetological Symposium, Cotswold Wildlife Park, Oxford, 1980* (pp. 75-80).
- Zwart, P. (2001) Pathophysiology: Assessment of the husbandry problems of reptiles on the basis of pathophysiological findings: A review, Veterinary Quarterly, 23:4, 140-147, DOI: 10.1080/01652176.2001.9695103