The road to 5G LTE-A evolution, Internet of Things and first 5G aspects

Reiner Stuhlfauth

Technology Marketing Manager

Subject to change – Data without tolerance limits is not binding. R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the owners. © 2016 ROHDE & SCHWARZ GmbH & Co. KG Test & Measurement Division

ROHDE & SCHWARZ GmbH reserves the copy right to all of any part of these course notes. Permission to produce, publish or copy sections or pages of these notes or to translate them must first be obtained in writing from ROHDE & SCHWARZ GmbH & Co. KG, Mühldorfstr. 15, 81671 Munich, Germany

21.1

5G Standardization

3GPP 5G Standardization Schedule

From Link Efficiency to System Efficiency

Air interface framework for 5G

Various combinations of above methods to fulfill multiple scenarios

Technology framework: Protocol aspects / targets

 \rightarrow Multiple radio connections in parallel

Mesh networks: multihop and device to device

Technology framework: Duplex methods

Technology framework: Modulation & Coding

Technology framework: Modulation & Coding

Coding trends:

- low complexity \rightarrow energy efficient
- fast decoding → high data rate
- hardware implementation → low latency

But: there is no code supporting all the requests → it looks like multiple codes will coexist depending on the service: LDPC codes, Turbo codes; Polar codes etc.

Pulses are no longer orthogonal, faster symbol rate \rightarrow Receiver has to remove ISI ! Faster than Nyquist \rightarrow idea to shorten pulse length and send more data per spectrum

Massive MIMO / mm-Wave MIMO Beamforming is one important aspect

I Massive MIMO characterized by

- Very large (i.e. number of Tx elements) antenna array at the base station.
- Large number of users served simultaneously (choosing the right group of antenna elements for the specific users)
- TDD allows channel estimation without UE feedback.
- Leveraging the multiplicity of (uncorrelated) propagation channels to achieve high throughput.

- I mm-Wave MIMO/beamforming characterized by
 - Very small (in terms of dimensions) antenna arrays possible
 - Highly directional transmission is needed to compensate severe path loss (beamforming used at Tx and Rx)
 - Dynamic beam adaptation is essential

Over the air measurements will become much more important

Dynamic beamforming verification requires enhancement of the existing test procedures

3GPP terminology

Deployment scenarios

Source: 3GPP TR 38.913 Version 0.3.0 (2016-03)

Scenario	Indoor hotspot	Dense urban	Rural	Urban macro	High speed ⁶⁾ (500 km/h)
Carrier frequency range (aggregated system BW)	4GHz (200MHz) 30GHz ³⁾ (1GHz) 70GHz ⁴⁾ (1GHz)	4GHz (200MHz) 30GHz (1GHz)	700MHz+2GHz (20MHz) 4GHz (200MHz)	2GHz (TBD) 4GHz (200MHz) 30GHz (1GHz)	4GHz (200MHz) 30GHz (1GHz) 70GHz (1GHz)
BS / UE antenna elements ²⁾	256/32 256/8 (4GHz)	256/32 (30GHz) 256/8 (4GHz)	256/8 (4GHz) 64/4 (700MHz)	256/32 (30GHz) 256/8 (4GHz)	256/32 256/8 (4GHz)
Coverage range (indoor/outdoor user distribution in %)	20 m 100%/0%	200 m Macro (3 micro TRPs ⁵⁾ per macro) 80%/20%	1732 / 5000 m 50%/50%	500 m 80%/20%	1732 m 100% users in train
Scenario	Extreme	Urban overage	Highway	Urban grid for	Air to Ground
	rural ⁷⁾	for mMTC		connected car ⁹⁾	
Carrier frequency range (aggregated system BW)	rural ⁷⁾ < 3GHz (40MHz)		< 6GHz (200MHz)		tbd
(aggregated system		for mMTC 700 MHz (TBD)		connected car ⁹⁾	

- Frequency range beyond 6 GHz:
- 24 40 GHz and 66 86 GHz
- Maximum total modulation BW:
- 1 GHz

Maximum number of UE antenna elements: 32 Maximum number of BS

antenna elements: 256

ROHDE&SCHWARZ

Oct 2016

FCC opens up cm- and mm-Wave spectrum for 5G

- FCC adds additional spectrum for 5G wireless by an anonymously vote on July 14, 2016
- Total of 10.85 GHz will be made available:
 - 28 GHz: 27.5 to 28.35 GHz
 - 37 GHz: 37.0 to 38.6 GHz
 - 39 GHz: 38.6 to 40 GHz
 - 64 to 71 GHz.

Licensed

Unlicensed

Dedicated to Shared Spectrum Use

2x 425 MHz blocks for the 28 GHz band, country-wide available. Remaining, licensed bands are organized as 200 MHz blocks.

38.6 f in GHz 37.0 200 MHz Source: http://transition.fcc.gov/Daily_Releases/Daily_Business/2016/db0714/DOC-340310A1.pdf

Frequency spectrum considerations for 5G in Europe

Measures to support 5G roll-out in EU "A 5G-ready Europe": Key pre-requisites spectrum & fibre connectivity

Info from NGMN at Brussel, EU commission conference, Oct 16

- Fast track for EU spectrum identification, pioneer bands based on RSPG opinion, 2016;
- Full set of bands by end of 2017, technical usage options
- Mapping required fiber capillarity towards coordinated investment planning to increase fibre capacity for 5G backhauling, using political target for 5G connectivity along route corridors and train connections by 2025
- Best practice for cost reduction of dense cell deployment (emission limits, local taxes, etc), leveraging CODE general authorisations

Frequency spectrum considerations for 5G in Europe

"The RSPG agreed that the next phase of the multiannual spectrum policy program should be more a generic programme addressing the spectrum needs of various sectors and not be mainly focussed on wireless broadband only"

"The RSPG recommends maintaining the possibility to trade and lease the rights of spectrum use in the following frequency bands: 790-862 MHz, 880-915 MHz, 925-960 MHz, 1 710-1 785 MHz, 1 805-1 880 MHz, 1 920-1 980 MHz - 2 110-2 170 MHz, 2.5-2.69

GHz, and 3.4-3.8 GHz (see Article 6.8 of the current RSPP). The RSPG recommends adding any new ECS harmonised band to that list so that every new harmonised band can benefit from this regime."

"The RSPG will continue its efforts and develop recommendations to support the development of 5 G." "The RSPG recommends the following actions to prepare Europe for new spectrum for 5G above 6 GHz:

- The RSPG should develop before the end of 2017 an Opinion addressing bands

suitable for 5G above 6 GHz, focusing on those having the best potential for harmonisation. In addition, the RSPG analysis could address the challenges such as: spectrum sharing, network densification, usage conditions, policy implementation, incentive regulation practices. "

Info from NGMN at Brussel, EU commission conference, Oct 16

Frequency spectrum considerations for 5G in Europe

- 700MHz spectrum in particular for IoT use cases (like sensoring) requiring good coverage
- 3.4 3.8GHz spectrum for eMBB use cases supporting existing cell deployments (micro/marco cell deployment)
- 24.25 27.5GHz spectrum for eMBB use cases in small cell deployments

Info from NGMN at Brussel, EU commission conference, Oct 16

New waveform candidates

Comparison: Filter concept FBMC + GFDM

FBMC Filterbank Multicarrier

- Each sub-carrier is filtered individually, typically long filter duration
- Typically orthogonality has to be relaxed by using Offset-QAM (OQAM)

UFMC Universal Filtered Multi-Carrier

- Groups of carriers (sub-bands) are filtered, typically shorter filters
- Common number of carriers per subband and filter parameters
- Equally sized sub-bands to prevent aliasing
- Non-contiguous sub-bands possible
- Special cases: Only 1 sub-band = OFDM. 1 carrier / sub-band = FBMC

- Each subcarrier is pulse-shaped with a transmission filter, flexible configuration
- Each subcarrier may have a different bandwidth, typical, overlapping -> Rx more difficult

23

- Filtering by circular convolution to keep sequence length (Tail biting)
- OFDM can be seen as a special case of GFDM.
- Transmission based on a block structure definition, typically short frame length

ROHDE&SCHWARZ

- f-OFDM applies subband specific filtering, various characteristics possible
- Based on OFDM numerology
- Completely different parameter set for each sub-band
 - Sub-carrier spacing, FFT-size, filter, cyclic prefix length

Waveform – summary

- "What is the best waveform for 5G?" => it depends on which scenario is prioritized
- Using the same abbreviation does not implicitly mean we have the same waveform

Test Solution for 5G: Waveform candidates

Test Solution for 5G waveform candidates

Spectral measurements with non-linear DUT

Waveform Gains: From Theory to Reality

Two use cases: 5G Trial Services, Fixed Wireless Access (FWA)

Different network architectures for 5G NR due to SA and NSA (1)

Different network architectures for 5G NR due to SA and NSA (2)

- There are 8 major options possible.
 - Option #1 corresponds to legacy deployed LTE
 - Option #6, #8 will not be studied due to irrelevance, Option #5 is not applicable from RAN2 perspective.
 - Leaves Option #2, #3, #4, #7.

	RAN2	RAN3
Scenario 1	-	-
Scenario 2	YES	YES
Scenario 3 / 3a	YES	YES
Scenario 4 / 4a	YES	YES
Scenario 5	NO	YES
Scenario 6	NO	NO ?
Scenario 7 / 7a	YES	YES
Scenario 8 / 8a	NO	NO

(•)

Nov 2016 Introduction to 5G

KT's version of 5G Dual Connectivity based on Non-Standalone mode

Control plane

■ User plane

...compare 3GPP's version of 5G NR NSA mode using dual connectivity approach (Rel-12)

5G scenarios: latency requirements for URLLC

Latency request: radio protocol layer 2/3 SDU ingress point to the radio protocol layer 2/3 SDU egress point via the radio interface <= 0.5 msec

Latest RAN#86bis (October 2016) Discussion Channel Coding

- Agreement:
 - The channel coding scheme for eMBB data is LDPC, at least for information block size > X
 - FFS until RAN1#87 one of Polar, LDPC, Turbo is supported for information block size of eMBB data <= X
 - The selection will focus on all categories of observation, including overall implementation complexity, regardless of the number of coding schemes in the resulting solution (except if other factors are generally roughly equal)
 - The value of X is FFS until RAN1#87 (Nov 2016), 128 <= X <= 1024 bits, taking complexity into account
 - The channel coding scheme(s) for URLLC, mMTC and control channels are FFS
- I Huawei has a concern on the upper value of the range of X to be considered.

Way Forward on Waveform for NR Uplink (RAN1#86bis)

Agreement:

- NR Support DFT-S-OFDM based waveform complementary to CP-OFDM waveform, at least for eMBB uplink for up to 40GHz
 - FFS additional low PAPR techniques
 - CP-OFDM waveform can be used for a single-stream and multi-stream (i.e. MIMO) transmissions, while DFT-S-OFDM based waveform is limited to a single stream transmissions (targeting for link budget limited cases)
 - Network can decide and communicate to the UE which one of CP-OFDM and DFT-S-OFDM based waveforms to use
 - Note: both CP-OFDM and DFT-S-OFDM based waveforms are mandatory for UEs
- RAN1 should target for a common framework in designing CP-OFDM and DFT-S-OFDM based waveforms (without compromising CP-OFDM performance/complexity), e.g., control channels, RS, etc.
- Discuss further offline for possible refined evaluation assumptions/methodology for waveform

3GPP covers 5G NR in 38er series

spec number	title	notes
\$	◆ · · · · · · · · · · · · · · · · · · ·	\$
TR 38.801	Study on New Radio Access Technology: Radio Access Architecture and Interfaces	
TR 38.802	Study on New Radio Access Technology Physical Layer Aspects	
TR 38.803	TR for Study on New Radio Access Technology: RF and co-existence aspects	
TR 38.804	TR for Study on New Radio Access Technology Radio Interface Protocol Aspects	
TR 38.900	Study on channel model for frequency spectrum above 6 GHz	
TR 38.912	Study on New Radio (NR) Access Technology	
TR 38.913	Study on Scenarios and Requirements for Next Generation Access Technologies	

Nov 2016 Introduction to 5G

38

5G New Radio (NR) numerology

Current working assumption (WA) based on 3GPP RAN1#85 is that subcarrier scaling is based on f₀*2^m with f₀ = 15 kHz and scaling factor is 2^m with m {-2, 0, 1, ..., 5}

m =	-2	0	1	2	3	4	5	
Subcarrier Spacing [kHz]	3.75	15	30	60	120	240	480	
Symbol Length [µs]	266.67	66.67	33.33	16.67	8.333	4.17	2.08	
Component Carrier BW [MHz]	FFS							
Cyclic Prefix Length [µs]	FFS							
Subframe Length [ms] (= 1/2 ^m)	4	1	0.5	0.25	0.125	0.0625	0.03125	
Radio Frame Length [ms]								

Agreements based on RAN1#86 (08/2016)

- More than one CP length should be studied for a given subcarrier spacing
- The different CP lengths for a given subcarrier spacing can be of substantially different lengths
- FFS whether all of subcarrier spacing's support more than one CP length or not.

Comparison LTE and Verizon Wireless 5G PHY parameterization (1/2)

PHY parameter	LTE (Rel.8-14)	Verizon 5G	
Downlink (DL)	OFDM	OFDM	
Uplink (UL)	DFT-s-OFDM (SC-FDMA)	OFDM	
Subframe Length	1ms	0.2ms	
Subcarrier Spacing	15 kHz	75 kHz	
Sampling Rate	30.72 MHz	153.6 MHz	
Bandwidth	20 MHz	100 MHz	
NFFT	2048	2048	
OFDM symbol duration, no CP	66.67 us	13.33 us	
Frame Length	10 ms	10 ms	
#Subframes (#slots)	10 (20)	50 (100)	
СР Туре	Normal & Extended	Normal Only	
Multiplexing	FDD / TDD	Dynamic TDD	
Max RBs	6,15,25,50,75,100	100	
DL/UL Data coding	Turbo Code	LDPC code	

Comparison LTE and Verizon Wireless 5G PHY parameterization (2/2)

- Aggregation of up to 8 carriers 100 MHz each.
 - LTE: 3GPP Rel.10-12: only 5 carriers 20 MHz each.
 - LTE: 3GPP Rel.13: 32 carriers up to 20 MHz each.

New PHY signals and new or modified PHY channels, supporting additional capabilities.

Dynamic switch on a subframe basis from downlink to uplink transmission.

4 possibilities:

Verizon 5G specification

Basic principles: Downlink and Uplink

Verizon 5G vision: mapping of phase noise reference signals

5G scenarios: dual link scenario between LTE and 5G NR

5G scenarios: dual link scenario between LTE and 5G NR

5GTF : mapping of phase noise reference signals, e.g. xPUSCH

p=40 p=41 p=42

$$r(m) = \frac{1}{\sqrt{2}} (1 - 2 \cdot c(2m)) + j \frac{1}{\sqrt{2}} (1 - 2 \cdot c(2m + 1)),$$

mapping of a constant envelope demodulation reference signal for phase noise estimation into the data flow reference signal is based on a PN sequence linked to physical

p=4 p=4 $m = 0, 1, \dots, \lfloor N_{\text{RB}}^{\text{max}, \text{UL}} / 4 \rfloor - 1.$ m^{..}-0 m^{**} = 1

Cell ID

Old and new synchronization signals PSS/SSS, Extended Synchronization Signal (ESS)

time

xPBCH, ePBCH – Where are the broadcast channels transmitted?

- xPBCH transmitted on 4 consecutive radio frames.
 - Occupies subframe #0, #25 with PSS/SSS/ESS and BRS; BRS are used to demod xPBCH.
 - Transmitted info (MIB): SFN (8 bits), BRS period, ePBCH transmission periodicity.
- ePBCH carries System Information Block (xSIB) and is transmitted on pre-defined or configured subframe.
 - Subframe depends on BRS transmission period.
 - Periodicity is (none, 4, 8, 16) radio frames (xPBCH).

	BRS transmission period	# of subframes	Subframes within radio frame
	1 slot < 5 ms	1	49 th
	1 subframe = 5 ms	2	48 th , 49 th
	2 subframes = 10 ms	4	46 th , 47 th , 48 th , 49 th
G	4 subframes = 20 ms	850	42 nd , 43 th , ,48 th ,49 th

Initial synchronization aspects in 5G NR: LTE reminder

5GTF: concept of extended synchronization signal ESS

xPBCH, Beamforming Reference Signal (BRS)

5G air interface aspects: beam sweeping for initial access

5G air interface aspects: beam reference signals

5G air interface aspects: beam forming reporting

BRS_A		UE maintains up to 4 sets, each set consis of beam indicators + indicator	st	
		Field Beam index Wide-band BRSRP	Bit width 9*N 7*N	
		Field	Bit width	
		BRRS-RI Wide-band BRRS-RP	3*N 7*N	

UE reports beam index based on BRS or beam refinement index BRRS-RI and power level (i.e. BRSRP or BRRS-RP)

Aspects of DoA estimation – motivation for simpler methods

5GTF idea of beam forming reference signals BRS

Beam management as per TR38.802

- Beam management: a set of L1/L2 procedures to acquire and maintain a set of TRP(s) and/or UE beams that can be used for DL and UL transmission/reception, which include at least following aspects:
 - Beam determination: for TRP(s) or UE to select of its own Tx/Rx beam(s).
 - Beam measurement: for TRP(s) or UE to measure characteristics of received beamformed signals
 - Beam reporting: for UE to report information a property/quality of of beamformed signal(s) based on beam measurement
 - Beam sweeping: operation of covering a spatial area, with beams transmitted and/or received during a time interval in a predetermined way.

Technology framework: Multiple access schemes

SDMA = Space division multiple access

Basic idea is to overlap OFDMA subcarrier principle with code division multiple access \Rightarrow One subcarrier may contain traffic of multiple users

Multiple access – Bit division multiple access BDM

broadcast & multicast problem: tradeoff between coverage & throughput

Multiple access – Bit division multiple access BDM

take a closer look into 16-QAM: it can be uniform = same distance between all constellation points or non-uniform. The stream 1, bits b_1 and b_2 are in the 4 quadrants and have thus a better BER as stream 2

Multi-user Bit interleaved coded modulation with iterative decoding

General idea: Is it possible to distinguish different users by different ways of Channel coding, Interleaving and Modulation mapping ? => superimpose the system and approach capacity limit of channel

Multiple access – combination CDMA + OFDMA

In OFDMA one subcarrier transmits data from one user only

Basic idea is to overlap OFDMA subcarrier principle with code division multiple access ⇒ One subcarrier may contain traffic of multiple users

RSMA – general aspects

Successive interference cancellation SIC in NOMA

NOMA uses the principle of various power levels that are superpositioned. Each receiver will cancel the stronger signals

Successive Interference cancellation concept, 1st stage

NOMA – downlink example of performance

Low density signature – idea of system overload

but only $d_v < N$ chips will contain non-zero values

spread signal after channelization -> only fragment of spectrum is occupied

0 -> +1

-> this will result in some kind of sparsity of the code

SCMA encoding multiple access by using multiple codebooks

SCMA codebook design, idea of multidimension, rotated + shuffled

SCMA codebook design, trying to make it simple

Higher frequencies: path loss issues

Higher frequencies = higher attenuation Higher frequencies = smaller antennas

Friis equation

					R/	HITHER A
$\frac{P_{Rx}}{P_{Tx}}$	$= G_{antenn}$	$na\left(\frac{c}{4\pi f d}\right)$	$\Big)^{\gamma}$	f	Array Antennas	
		Be	amforming		and the second second	
EXAMPLE @ 28 GHz:	PathLoss 28 GHz	γ = 2 Free Space	γ = 1.6 to 1.8 Indoor LOS	γ = 2.7 to 3.5 Urban Area	Sohere Area : 410	p2
	1 m	- 61,4 dB	- 52 dB (k=1,7)	-92,1 dB (k = 3)	Area : 4/10	
	10 m	- 81,4 dB	-69 dB	-122,1 dB		
	100 m	- 101,4 dB	-86 dB	- 151,1 dB		
	1000 m	- 121,4 dB	-103 dB	- 181,1 dB		γ = path loss exponent
ROHDE&SCH	WARZ				80	

Channel sounding

Main idea of channel sounding is to understand the wave propagation characteristics Like attenuation, power delay profile, direction of arrival, correlation aspects etc. -> especially for the "higher" frequency ranges

Why channel modeling ?

Objectives

- The performance of a radio system is ultimately determined by the radio channel
- The channel models basis for
 - System design
 - Algorithm design, antenna design
- Without reliable channel models, it is hard to design radio systems that work well in real environments.
- New challenges within "5 G mm-waves"
 - Extremely extended frequency range i.e. frequency dependency of parameters (6 – 100 GHz)
 - Spatial information / 3D beamforming / spatial consistency

- Some examples:
- behavior in time/place?
- behavior in frequency?
- directional properties?
- bandwidth dependency?
- behavior in delay?

Channel Modeling Approaches

- Full Electromagnetic Solutions => exact geometry, materials
- Deterministic (Raytracing) => exact geometry, materials
- Quasi Deterministic + Stochastic (3D geometry-based stochastic channel models GSCM) => some geometry, large scale parameters needed, complexity at acceptable level

Channel sounding measurement aspects - structure

Channel measurements in mmWave frequency bands R&S TS-5GCS channel sounding solution

Channel sounding: relative or absolute timing information

Sounding @ 82.5 GHz R&S 5G mmWave Expert Day September 2015

500 MHz BW transmitter AFQ100B + SMW200A

500 MHz BW receiver FSW85

Channel sounding campaign with HHI Fraunhofer (Berlin, Nov. 27th, 2015)

- HHI together with R&S conducted simultaneous measurements at 10 GHz, 28 GHz, 40 GHz and 82 GHz (500 MHz BW for 10 GHz, 1.5 GHz BW for other frequencies).
- Scenarios: Street canyon and shopping mall.
- Evaluation of measurement results under way.

Channel sounding – evaluation aspects

Problem: Where does the echo come from?

Directional Information: Spatial Filtering

mechanical Scanning

- Direct measurements of angles of arrivals
- Mechanical scanning is very slow, only suitable for static channels
- Mechanical scanning is very simple
- Limited resolution
- Ambiguity through overlapping patterns owing to the antenna characteristic
- difficult for high frequencies as high gain antennas are needed

Directional Information: Spatial Filtering

- Direct measurements of angles of arrivals
- High effort and low performance of electronic scanning
- Electronic scanning is very fast
- Limited resolution
- Ambiguity through overlapping patterns owing to the antenna characteristic
- difficult to obtain phase information

Directional Information: Estimation Algorithm

using amplitude PDP and phase information and apply postprocessing, e.g.

- Estimation of direction of arrival using array signal processing (MUSIC etc.)
- High hardware effort
- High measurement speed
- Sensitive to phase errors

Directional Information: Estimation Algorithm - Estimation of direction of arrival

Switched Array

ROHDE&SCHWARZ

 Estimation of direction of arrival using array signal processing (MUSIC etc.)

- Less hardware effort (in comparison to mechanical antenna)
- High measurement speed
- Typically cylindrical switched array
- Linear, circular or 3D movements for virtual array
- Calibration needed, for every path!
- Sensitive to phase errors = difficult for high frequencies

Circular Switched Array Antenna for 3D DoA Measurements

- Design for frequencies up to 18 GHz available
- Uniform cylindrical array
- 16 columns, 4 dual-polarized patch elements per column => 128 elements in total
- Alignment of switching by Synchronomat
- ∎ target frequency 3.75GHz
- Target bandwidth 800MHz
- Successfully applied for industry measurements

source: HHI Berlin

97

Directional Information: Estimation Algorithm

- Estimation of direction of arrival using array signal processing (MUSIC etc.)
- Less hardware effort (in comparison to mechanical antenna)
- High measurement speed
- Typically cylindrical switched array
- Linear, circular or 3D movements for virtual array
- No calibration needed for virtual array
- Sensitive to phase errors

Angular Information from Virtual Arrays: Proof of Concept

Virtual Array

- Indoor measurement in the Rohde & Schwarz R&D center "atrium"
- Frequency: 17 GHz
- Linear moving receiver
- I ms snapshot rate
- Measurement bandwidth: 250 MHz

- Direct outcome of measurements at 17 GHz
- 60,000 snapshots in 60s, distance 25m
- In the first 10s no movement
- Line-Of-Sight Path (LOS) and reflected components (multipath contributions: MPC)
- Channel length: 1µs
- Large-scale fading of MPCs due to RX movement

101

Evolution of the CIRs over moving distance

- Top-view of set of power delay profiles
- Change of delays due to movement (piecewise linear)
- Certain paths (tracks) clearly visible

ROHDE&SCHWARZ

- Estimation of the paths by tracking algorithm
- Evolution of delay over time (i.e. distance) yields information about direction of arrival and Doppler shift
- Robust large scale analysis as long as direction of paths do not change during measurement run (farfield assumption)

Direction of Arrival DoA Evaluation

• The relationship between a detected trace and its DoA can be derived from geometry:

 $\left(d\tau \right)$

104

$\phi = \operatorname{arc}$	$\cos\left(c \cdot \frac{\mathrm{d}\tau}{\mathrm{d}x}\right), 0 \le \phi \le \pi, \text{comparison}$ $\mathrm{MUSIC \ pro}$	
distance [m]	$\cos(\phi)$	
25-20	-1,00 0.92 -0.52 -0.75 -0.96 1.01 -1.13	
15 - 20	-0.97 - 0.78 0.94 - 1.03 1.08 1.01 - 0.99	
10 - 15 5 - 10	-1.03 - 1.08 - 0.46 - 1.02 -1.09 1.11 1.21 1.24 - 1.25 - 1.16 1.15 - 1.28	
0-5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

ROHDE&SCHWARZ

Direction of arrival testing Power Azimuth Profiles

105

R&S Memmingen Factory Measurement Campaign

Industry 4.0 channel sounding trial

Position: Tx1 Rx4 (NLOS)

Frequencies: 38 GHz, 28 GHz, 5.8 GHz

Bandwidth: 500 MHz

ROHDE&SCHWARZ

Industry 4.0 trial: Street in Factory Hall, Moving Vehicle Setup Description, R&S factory in Memmingen

108

Industry 4.0 trial: balcony scenario: LOS and Rx is moved around a corner Corner Effect

110

Massive MIMO Theory & Hardware

Energy Efficiency: energy efficiency vs site installation costs

ROHDE&SCHWARZ

Easiest way to improve energy efficiency: more antennas

Phased Array Antenna Principle

Example: Linear array

- 8 antenna elements
- Equidistant spacing d
- Incident signal perpendicular to array

Phase front reaches all antenna elements at same time

Phased Array Antenna Principle

Example: Linear array

- -
- Direction of incident signal with angle Θ Phase front reaches antenna elements at different times -

Phased Array Antenna Principle

Advantage: Main beam direction steerable with phase shifters

Problem: Still high side lobe level

How to get side lobe level down?

phase shifters: Weighting by phase

beamforming with phased array = phase + amplitude modification

Analog beamforming concept

- separate control of the phase of each element
- beam can be steered not only to discrete but virtually any angle using active beamforming antennas
- not as expensive and complex as the other approaches
- On the other hand implementing a multi-stream transmission with analog beamforming is a highly complex task
- one RF chain

antenna arrays and beamforming scenarios

Linear antenna array:

- one phase shifter for antenna element segments •
- simpler structure
- beam forming only in one dimension possible

Planar antenna array:

- one phase shift for each antenna element
- structure is more complex
- beam forming in 2 dimensions possible, i.e. horizontal and vertical = 3D beamforming

MIMO – work shift to transmitter

MIMO – codebook based precoding

Digital beamforming concept

- digital beamforming in theory supports as many RF chains as there are antenna elements
- suitable precoding is done in the digital baseband, this yields higher flexibility regarding transmission and reception
- additional degree of freedom can be leveraged to perform advanced techniques like multi-beam MIMO
- Digital beamforming can accommodate multi-stream transmission and serve multiple users simultaneously
- Digital control of the RF chain enables optimization of the phases according to the frequency over a large band
- very high complexity and requirements regarding the hardware may significantly increase cost,

energy consumption and complicate integration in mobile devices

ROHDE&SCHWARZ

Digital beamforming concept

digital beamforming allows to simultaneously generate multiple beams by using the same hardware antenna elements.

-> at the price of higher complexity, i.e. number of RF chains

Hybrid beamforming concept

- trial to combine the advantages of both analog and digital beamforming architectures
- reducing the number of complete RF chains
- number of simultaneously supported streams is reduced compared to full blown digital beamforming

Hardware Perspective: Massive MIMO = Beamforming + MIMO

Applications of Massive MIMO from the networks perspective

3GPP RAN1#85 mMIMO transceiver architectures

Passive vs. Active Antennas

Input/Output: Radiated Signal		Input/Output: Radiated Signal	
Passive Antenna		Active Antenna	Power/Fiber
Outer enclosure: Radome	Front Radome	Outer enclosure: Radome	
Antenna + Feeding Network		Antenna + Feeding Network	
RF I/O ports	<u>ਡ</u> ੀ		
		RF Transceiver Boards + Filters CPRI + FPGA Board Shielding + Heatsink	
Outer enclosure	Rear Radome/Heatsink	Outer enclosure	
Input/Output: RF Signal		Input/Output: Digital IQ Baseband Data	*****
ROHDE & SCHWARZ			

Massive MIMO Challenges

Limitations of Digital IQ on Fiber: Latency & Capacity

ROHDE&SCHWARZ

Active Antenna Arrays: The Calibration Problem

OCHWAKZ

Phase Tolerances

Antenna Self-Calibration

Antenna Mutual Coupling

Measure Mutual Couple & Capacity in Massive MIMO

Massive MIMO antenna arrays

Measurements of S-Parameters of Antenna Arrays

Active testing: excite all antenna elements simultaneously and measure the coupling to other elements. -> this is much faster

 $\begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix}$

ROHDE&SCHWARZ

Irregular Arrays

Massive MIMO = Complex Basestations

Fundamental Design Parameters for Active & Passive Antennas

Fundamental Properties: Electromagnetic Fields

Chamber Size: Far-field or Near-field?

$$R_{FF} = \left(\frac{2D^2}{\lambda} \text{ or } \frac{2\lambda}{HPBW}\right)$$

3GPP Active Base-station Beam Requirements (2016)

The manufacturer of the AAS will declare both the beam direction and a threshold comprised of four points for each AAS beam. The maximum radiated EIRP of the declared AAS beam is the mean power level measured in the boundary formed by the four points. The four points are defined as B (bottom), T (top) L(left), and R(right); together with the beam peak, this is known as the five point beam test.

The number of beams supported by the AAS is left to the manufacturer to declare where both continuous and non-continuous beam declarations are possible. Radiated transmit power is defined as the EIRP level for a declared beam at a specific beam peak direction. Although the claimed EIRP level (blue and red crosses) has to be achieved for all claimed beam peak directions, however, for compliance only the declaration of the center and the extreme directions are sufficient to be measured (marked with red crosses)

Measuring 5G mmWave & Massive MIMO Systems

R&S OTA	Product Ma	trix	Show a server are		
	CTIA OTA: TS8991/WPTC	OTA R&D: Massive MIMO Spiral Scanner	OTA Production: ATS1000	OTA Production: OTA Power Sensors	Benchtop Systems: DST200 & TS7124
Frequencies	0.4 to 18 GHz	0.4 to 40 GHz	0.4 to 90 GHz	28-75 GHz	28-90 GHz
Minimum Size	250x250x220 cm	250x250x220 cm	70x100x140 cm	45x50x48 cm	77x76x70 cm
Fields	Near & Far	Near & Far	Near & Far	Far Field	Far Field
Signals	Modulated/CW	Modulated/CW	Modulated/CW	Modulated/CW	Modulated/CW
Parameters	EiRP, EiS, Gain, EVM, …	EiRP, EiS, Gain, EVM,	EiRP, EiS, Gain, EVM, …	Gain	EiRP, EiS, Gain, EVM
Availability	Available for purchase	Available for purchase	Available for purchase in Q2 2017	Available for Purchase	Available for Purchase
ROHDE&SCHWARZ					

TS8991: Total Radiated Power Sampling Methods

Spiral Scanner Reference Antenna OTA System

Mun //////

Alternative for far-field TRP measurements NRPM OTA Power Sensor: Magnitude Measurements

R&S®NRPM OTA Power Sensor

Combination of power sensor and Vivaldi antenna on one module

Integrated level detector diode - no cable losses

Frequency range: 27.5 GHz to 75 GHz

Level range:

-75 dB to -25 dBm (continuous) -62 dBm to -25 dBm (trace)

Low radar cross section: < -20 dBsm (typical)

Accuracy for relative power measurements @28 GHz and 39 GHz: Levels \leq -35 dBm: < 0.1 dB Levels > 35 dBm: < 0.2 dB

ROHDE&SCHWARZ

NRPM OTA Power Sensor Antenna Module

3 Channel NRPM OTA Power Sensor

Antenna Array Beamsteering Magnitude Only

Control PC

OTA Power Sensor

R&S Antenna Test Solutions Summary

R&S test solutions to investigate, develop and standardize

159

Conclusion

Is 5G just the next generation? No: It is a paradigm shift!

Approach in industry:

- UMTS: 1: define a technology for data transmission, 2: for what? / "what is the killer app?"
- LTE (3GPP: <u>e-UTRA</u>): 1: define a better technology than UMTS, 2: use case (mobile web)
- 5G: 1: define use cases, 2: requirements, 3: elaborate technologies / solutions
- From cell-centric (2G 4G) to user-centric / application-centric in 5G (beamforming)
- From link efficiency (2G 4G) to system efficiency in 5G (RAT defined per app)
- From antenna connectors (2G 4G) to Over-the-Air testing in 5G (antenna arrays, beamforming)
- Increasing demand for security / high reliability in 5G (up to mission- and safetycritical use cases)

Rohde & Schwarz offers all essential capabilities to support the wireless communications industry with solutions needed to investigate, standardize, develop and rollout 5G

"If you want to go fast, go alone." If you want to go far, go together!" African proverb

