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REVIEWS

Early-warning signals for critical transitions
Marten Scheffer1, Jordi Bascompte2, William A. Brock3, Victor Brovkin5, Stephen R. Carpenter4, Vasilis Dakos1,
Hermann Held6, Egbert H. van Nes1, Max Rietkerk7 & George Sugihara8

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which
a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached
is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that
may indicate for a wide class of systems if a critical threshold is approaching.

I
t is becoming increasingly clear that many complex systems have
critical thresholds—so-called tipping points—at which the system
shifts abruptly from one state to another. In medicine, we have
spontaneous systemic failures such as asthma attacks1 or epileptic

seizures2,3; in global finance, there is concern about systemic market
crashes4,5; in the Earth system, abrupt shifts in ocean circulation or
climate may occur6; and catastrophic shifts in rangelands, fish popula-
tions or wildlife populations may threaten ecosystem services7,8.

It is notably hard to predict such critical transitions, because the state
of the system may show little change before the tipping point is
reached. Also, models of complex systems are usually not accurate
enough to predict reliably where critical thresholds may occur.
Interestingly, though, it now appears that certain generic symptoms
may occur in a wide class of systems as they approach a critical point. At
first sight, it may seem surprising that disparate phenomena such as the
collapse of an overharvested population and ancient climatic transi-
tions could be indicated by similar signals. However, as we will explain
here, the dynamics of systems near a critical point have generic prop-
erties, regardless of differences in the details of each system9. Therefore,
sharp transitions in a range of complex systems are in fact related. In
models, critical thresholds for such transitions correspond to bifurca-
tions10. Particularly relevant are ‘catastrophic bifurcations’ (see Box 1
for an example), where, once a threshold is exceeded, a positive feed-
back propels the system through a phase of directional change towards
a contrasting state. Another important class of bifurcations are those
that mark the transition from a stable equilibrium to a cyclic or chaotic
attractor. Fundamental shifts that occur in systems when they pass
bifurcations are collectively referred to as critical transitions11.

We will first highlight the theoretical background of leading indica-
tors that may occur in non-equilibrium dynamics before critical tran-
sitions, and illustrate how such indicators can perform in model
generated time-series. Subsequently, we will review emerging empirical
work on different systems and discuss prospects and challenges.

Theory
Critical slowing down and its symptoms. The most important clues
that have been suggested as indicators of whether a system is getting
close to a critical threshold are related to a phenomenon known in
dynamical systems theory as ‘critical slowing down’12. Although critical
slowing down occurs for a range of bifurcations, we will focus on the
fold catastrophe (Box 1) as a starting point. Inappropriate use of this
classical model caused some controversy in the past13, but it is now

considered to capture the essence of shifts at tipping points in a wide
range of natural systems ranging from cell signalling pathways14 to
ecosystems7,15 and the climate6. At fold bifurcation points (F1 and F2,
Box 1), the dominant eigenvalue characterizing the rates of change
around the equilibrium becomes zero. This implies that as the system
approaches such critical points, it becomes increasingly slow in re-
covering from small perturbations (Fig. 1). It can be proven that this
phenomenon will occur in any continuous model approaching a fold
bifurcation12. Moreover, analysis of various models shows that such
slowing down typically starts far from the bifurcation point, and that
recovery rates decrease smoothly to zero as the critical point is
approached16. Box 2 describes a simple example illustrating this.

The most straightforward implication of critical slowing down is
that the recovery rate after small experimental perturbation can be
used as an indicator of how close a system is to a bifurcation point16.
Because it is the rate of change close to the equilibrium that matters,
such perturbations may be very small, posing no risk of driving the
system over the threshold. Also, models indicate that in spatially
extensive systems at risk of systemic collapse, small-scale experi-
mental probing may suffice to test the vicinity of the threshold for
such a large-scale transition. For instance, it has been shown that
recovery times after local perturbation increase in models of frag-
mented populations approaching a threshold for global extinction17.

For most natural systems, it would be impractical or impossible to
monitor them by systematically testing recovery rates. However,
almost all real systems are permanently subject to natural perturba-
tions. It can be shown that as a bifurcation is approached in such a
system, certain characteristic changes in the pattern of fluctuations
are expected to occur. One important prediction is that the slowing
down should lead to an increase in autocorrelation in the resulting
pattern of fluctuations18 (Fig. 1). This can be shown mathematically
(Box 3), but it is also intuitively simple to understand. Because slow-
ing down causes the intrinsic rates of change in the system to
decrease, the state of the system at any given moment becomes more
and more like its past state. The resulting increase in ‘memory’ of the
system can be measured in a variety of ways from the frequency
spectrum of the system19,20. The simplest approach is to look at lag-1
autocorrelation21,22, which can be directly interpreted as slowness of
recovery in such natural perturbation regimes16,18. Analyses of simu-
lation models exposed to stochastic forcing confirm that if the system
is driven gradually closer to a catastrophic bifurcation, there is a
marked increase in autocorrelation that builds up long before the

1Department of Environmental Sciences, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. 2Integrative Ecology Group, Estación Biológica de Doñana,
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critical transition occurs (Fig. 2d). This is true not only for simple
models22, but also for highly elaborate and relatively realistic models
of spatially complex systems23.

Increased variance in the pattern of fluctuations is another possible
consequence of critical slowing down as a critical transition is
approached24 (Fig. 1). Again, this can be formally shown25 (Box 3),
as well as intuitively understood: as the eigenvalue approaches zero,
the impacts of shocks do not decay, and their accumulating effect
increases the variance of the state variable. In principle, critical slow-
ing down could reduce the ability of the system to track the fluctua-
tions, and thereby produce an opposite effect on the variance26,27.
However, analyses of models show that an increase in the variance
usually arises and may be detected well before a critical transition
occurs24 (Fig. 2).

In summary, the phenomenon of critical slowing down leads to
three possible early-warning signals in the dynamics of a system
approaching a bifurcation: slower recovery from perturbations,
increased autocorrelation and increased variance.
Skewness and flickering before transitions. In addition to autocor-
relation and variance, the asymmetry of fluctuations may increase

before a catastrophic bifurcation28. This does not result from critical
slowing down. Instead, the explanation is that in catastrophic bifur-
cations such as fold bifurcations (Box 1), an unstable equilibrium
that marks the border of the basin of attraction approaches the
attractor from one side (Box 1). In the vicinity of this unstable point,
rates of change are lower (reflected in a less steep slope in the stability
landscapes). As a result, the system will tend to stay in the vicinity of
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Figure 1 | Some characteristic changes in non-equilibrium dynamics as a
system approaches a catastrophic bifurcation (such as F1 or F2, Box 1).
a, b, c, Far from the bifurcation point (a), resilience is large in two respects:
the basin of attraction is large and the rate of recovery from perturbations is
relatively high. If such a system is stochastically forced, the resulting
dynamics are characterized by low correlation between the states at
subsequent time intervals (b, c). d–f, When the system is closer to the
transition point (d), resilience decreases in two senses: the basin of attraction
shrinks and the rate of recovery from small perturbations is lower. As a
consequence of this slowing down, the system has a longer memory for
perturbations, and its dynamics in a stochastic environment are
characterized by a larger s.d. and a stronger correlation between subsequent
states (e, f). Plots produced from a stochastically forced differential
equation15 representing a harvested population:
dX/dt 5 X(1 2 X/K) 2 c(X2/(X2 1 1)), where X is population density, K is
the carrying capacity (set to 10) and c is the maximum harvest rate (set to 1
for high resilience and 2.6 for low resilience).

Box 1 jCritical transitions in the fold catastrophe model

The equilibrium state of a system can respond in different ways to
changes in conditions such as exploitation pressure or temperature
rise (Box 1 Figure a, b, c). If the equilibrium curve is folded backwards
(Box 1 Figure c, d), three equilibria can exist for a given condition. The
grey dotted arrows in the plots indicate the direction in which the
system moves if it is not in equilibrium (that is, not on the curve). It can
be seen from these arrows that all curves represent stable equilibria,
except for the dashed middle section in Box 1 Figure c, d. If the system is
driven slightly away from this part of the curve, it will move further
away instead of returning. Hence, equilibria on this part of the curve are
unstable and represent the border between the basins of attraction of
the two alternative stable states on the upper and lower branches. If
the system is very close to a fold bifurcation point (for example point F1

or point F2), a tiny change in the condition may cause a large shift in the
lower branch (Box 1 Figure c). Also, close to such a bifurcation a small
perturbation can drive the system across the boundary between the
attraction basins (Box 1 Figure d). Thus, those bifurcation points are
tipping points at which a tiny perturbation can produce a large
transition. Small perturbations can also cause large changes in the
absence of true bifurcations, provided that the system is very sensitive
in a certain range of conditions (Box 1 Figure b). Finally, a shift in system
state may simply be caused by a sudden large external force (Box 1
Figure a). Early-warning signals tend to arise as systems approach a
bifurcation point such as in Box 1 Figure c, d, and also if systems
approach a non-catastrophic threshold such as the one shown in Box 1
Figure b.
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the unstable point relatively longer than it would on the opposite side
of the stable equilibrium. The skewness of the distribution of states is
expected to increase not only if the system approaches a catastrophic
bifurcation, but also if the system is driven closer to the basin bound-
ary by an increasing amplitude of perturbation28.

Another phenomenon that can be seen in the vicinity of a cata-
strophic bifurcation point is flickering. This happens if stochastic
forcing is strong enough to move the system back and forth between
the basins of attraction of two alternative attractors as the system
enters the bistable region before the bifurcation26,29. Such behaviour
is also considered an early warning, because the system may shift
permanently to the alternative state if the underlying slow change
in conditions persists, moving it eventually to a situation with only
one stable state. Flickering has been shown in models of lake eutro-
phication24 and trophic cascades30, for instance. Also, as discussed
below, data suggest that certain climatic shifts and epileptic seizures
may be presaged by flickering. Statistically, flickering can be observed
in the frequency distribution of states as increased variance and
skewness as well as bimodality (reflecting the two alternative
regimes)24.
Indicators in cyclic and chaotic systems. The principles discussed so
far apply to systems that may be stochastically forced but have an
underlying attractor that corresponds to a stable point (for example
the classic fold catastrophe illustrated in Box 1). Critical transitions in
cyclic and chaotic systems are less well studied from the point of view

Box 3 jThe relation between critical slowing down, increased
autocorrelation and increased variance

Critical slowing down will tend to lead to an increase in the
autocorrelation and variance of the fluctuations in a stochastically
forced system approaching a bifurcation at a threshold value of a
control parameter. The example described here illustrates why this is
so. We assume that there is a repeated disturbance of the state
variable after each period Dt (that is, additive noise). Between
disturbances, the return to equilibrium is approximately exponential
with a certain recovery speed, l. In a simple autoregressive model this
can be described as follows:

xnz1{�xx~elDt(xn {�xx)z sen

ynz1~elDtynz sen

Here yn is the deviation of the state variable x from the equilibrium, en is
a random number from a standard normal distribution and s is the
standard deviation.
If l and Dt are independent of yn, this model can also be written as a
first-order autoregressive (AR(1)) process:

ynz1~aynzsen

The autocorrelation a ; elDt is zero for white noise and close to one for
red (autocorrelated) noise. The expectation of an AR(1) process
ynz1~czaynzsen is18

E(ynz1)~E(c)zaE(yn)zE(sen)[m~czamz0[m~
c

1{a

For c 5 0, the mean equals zero and the variance is found to be

Var(ynz1)~E(y2
n){m2~

s2

1{a2

Close to the critical point, the return speed to equilibrium decreases,
implying that l approaches zero and the autocorrelation a tends to one.
Thus, the variance tends to infinity. These early-warning signals are the
result of critical slowing down near the threshold value of the control
parameter.

Box 2 jCritical slowing down: an example

To see why the rate of recovery rate after a small perturbation will be
reduced, and will approach zero when a system moves towards a
catastrophic bifurcation point, consider the following simple dynamical
system, where c is a positive scaling factor and a and b are parameters:

dx

dt
~c(x{a)(x{b) ð1Þ

It can easily be seen that this model has two equilibria, �xx1 5 a and
�xx2 5 b, of which one is stable and the other is unstable. If the value of
parameter a equals that of b, the equilibria collide and exchange
stability (in a transcritical bifurcation). Assuming that �xx1 is the stable
equilibrium, we can now study what happens if the state of the
equilibrium is perturbed slightly (x 5 �xx1 1 e):

d(�xx1ze)

dt
~f(�xx1ze)

Here f(x) is the right hand side of equation (1). Linearizing this equation
using a first-order Taylor expansion yields

d(�xx1ze)

dt
~f(�xx1ze)<f(�xx1)z

Lf

Lx

�
�
�
�
�xx1

e

which simplifies to

f(�xx1)z
de

dt
~f(�xx1)z

Lf

Lx

�
�
�
�
�xx1

e[
de

dt
~l1e ð2Þ

With eigenvalues l1 and l2 in this case, we have

l1~
Lf

Lx

�
�
�
�

a

~{c(b{a) ð3Þ

and, for the other equilibrium

l2~
Lf

Lx

�
�
�
�

b

~c(b{a) ð4Þ

If b . a then the first equilibrium has a negative eigenvalue, l1, and is
thus stable (as the perturbation goes exponentially to zero; see
equation (2)). It is easy to see from equations (3) and (4) that at the
bifurcation (b 5 a) the recovery rates l1 and l2 are both zero and
perturbations will not recover. Farther away from the bifurcation, the
recovery rate in this model is linearly dependent on the size of the basin
of attraction (b 2 a). For more realistic models, this is not necessarily
true but the relation is still monotonic and is often nearly linear16.
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Figure 2 | Early warning signals for a critical transition in a time series
generated by a model of a harvested population77 driven slowly across a
bifurcation. a, Biomass time series. b, c, d, Analysis of the filtered time series
(b) shows that the catastrophic transition is preceded by an increase both in
the amplitude of fluctuation, expressed as s.d. (c), and in slowness, estimated
as the lag-1 autoregression (AR(1)) coefficient (d), as predicted from theory.
The grey band in a identifies the transition phase. The horizontal dashed
arrow shows the width of the moving window used to compute the indicators
shown in c and d, and the red line is the trend used for filtering (see ref. 22 for
the methods used). The dashed curve and the points F1 and F2 represent the
equilibrium curve and bifurcation points as in Box 1 Figure c, d.
a.u., arbitrary units.
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of early-warning signals. Such transitions are associated with differ-
ent classes of bifurcation10. First, there are the bifurcations that mark
the transitions between stable, cyclic and chaotic regimes. An
example is the Hopf bifurcation, which marks the transition from a
stable system to an oscillatory system31. Like the fold bifurcation, this
bifurcation is signalled by critical slowing down32: close to the
bifurcation, perturbations lead to long transient oscillations before
the system settles to the stable state.

Another class of bifurcations are the non-local bifurcations10 that
occur if intrinsic oscillations bring the system to the border of the basin
of attraction of an alternative attractor. Such basin-boundary colli-
sions33 are not associated with particular properties of stable or
unstable points that can be analytically defined. We know of no explicit
work on early-warning signals for such transitions. Nonetheless, the
dynamics may be expected to change in a characteristic way before
basin-boundary collisions occur. For instance, oscillations may
become ‘stretched’, as the system dwells longer in the vicinity of the
basin boundary, where rates of change are slower34, implying increased
autocorrelation. Finally, there is the phenomenon of phase locking
between coupled oscillators. Again, alternative attractors are often
involved35 and the corresponding bifurcations are associated with
critical slowing down36, suggesting the existence of early-warning
signals. Indeed, rising variance and flickering occur before an epileptic
seizure, a phenomenon associated to the phase locking of firing in
neural cells (see below).
Spatial patterns as early-warning signals. In addition to early-warning
signals in time series, there are particular spatial patterns that can arise
before a critical transition. Many systems can be seen as consisting of
numerous coupled units each of which tends to take a state similar to
that of the units to which it is connected. For instance, it is well known
that financial markets affect each other. Also, the attitudes of individuals
towards certain issues is affected by the attitudes of their peers37,38, and
the persistence of species in habitat patches in a fragmented landscape
depends on the presence of the same species in neighbouring patches
from which recolonization can happen39,40. In such systems, phase tran-
sitions may occur9,41 much as in ferromagnetic materials, where indi-
vidual particles affect each others’ spin. As gradual change in an external
forcing factor (for example a magnetic field) drives the system closer to a
transition, the distribution of the states of the units in such systems may
change in characteristic ways. For instance, scale-invariant distributions
of patch sizes occur close to a systemic transition, and there is a general
tendency towards increased spatial coherence, measured as increased
cross-correlation (or in oscillating units, resonance) among units before
a critical event9,41.

Certain classes of spatial system deviate from this general pattern
and can have other, more specific, indicators of imminent transitions.
For instance, in systems governed by local disturbance (for example
grazers foraging locally on vegetation patches), scale-invariant power-
law structures that are found for a large parameter range vanish as a
critical transition is approached42. In systems that have self-organized
regular patterns43, critical transitions may be signalled by particular
spatial configurations. For instance, models of desert vegetation show
that as a critical transition to a barren state is neared, the vegetation
becomes characterized by regular patterns because of a symmetry-
breaking instability. These patterns change in a predictable way as
the critical transition to the barren state is approached (Fig. 3), imply-
ing that this may be interpreted as early-warning signal for a cata-
strophic bifurcation44.

In conclusion, when it comes to interpreting spatial patterns it is
important to know which class of system is involved. Although broad
classes have similar early-warning signals, there is no ‘one-size-fits-
all’ spatial pattern announcing critical transitions.

Precursors of transitions in real systems

Most of the work on early-warning signals for critical transitions has
so far been done using simple models, and empirical proof that critical
slowing down occurs at bifurcations has been provided by controlled

experiments with lasers45 and neurons46. The question therefore
remains of whether highly complex real systems such as the climate
or ecosystems will show the theoretically expected early-warning
signals. Results from elaborate and relatively realistic climate models
including spatial dynamics and chaotic elements23 suggest that some
signals might be robust in the sense that they arise despite high com-
plexity and noisiness. Nonetheless, it is clearly more challenging to
pick up early-warning signals in complex natural systems than in
models. We now review some emerging results on the climate and
ecosystems. Also, we highlight empirical successes in finding early-
warning signals of transitions in systems for which we have a relatively
poor understanding of the mechanisms that drive the dynamics, such
as the human brain and financial markets.
Climate. Interest in the possibility of critical transitions in the Earth
system has been sparked by records of past climate dynamics reveal-
ing occasional sharp transitions from one regime to another47. For
instance, about 34 Myr ago the Earth changed suddenly from the
tropical state in which it had been for many millions of years to a
colder state in which Antarctica was glaciated, a shift known as the
greenhouse–icehouse transition48–50 (Fig. 4). Also, glacial cycles tend
to end with an abrupt warming51,52.

Uncertainty in reconstructing such dynamics remains considerable,
and it is even more difficult to unveil the underlying mechanisms.
Nonetheless, the sharpness of the shifts and the existence of positive
feedbacks that, if strong enough, could cause self-propelling change
have led to the suggestion that these and other examples of rapid
climate change could be explained as critical transitions6,47,53.
Therefore, the reconstructed climate dynamics before such transitions
are an obvious place to look for early-warning signals. In a recent
analysis, a significant increase in autocorrelation was found in each
of eight examples of abrupt climate change analysed22 (Fig. 4).

Another recent study suggests that flickering preceded the abrupt end
of the Younger Dryas cold period54. Although the first part of this cold
episode was quite stable, rapid alternations between a cold mode and a
warm mode characterized the later part, and the episode eventually
ending in a sharp shift to the relatively warm and stable conditions of
the Holocene epoch55. After examination of longer timescales, it has
been suggested that the increasing Pleistocene climate variability may be
interpreted as a signal that the near geological future might bring a
transition from glacial–interglacial oscillations to a stable state charac-
terized by permanent mid-latitude Northern Hemisphere glaciation56.
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Figure 3 | Ecosystems may undergo a predictable sequence of self-
organized spatial patterns as they approach a critical transition. We show
the modelled response of semi-arid vegetation to increasing dryness of the
climate. Solid lines represent mean equilibrium densities of vegetation. The
insets are maps of the pattern: the dark colour represents vegetation and the
light colour represents empty soil. As the bifurcation point for a critical
transition into a barren state is approached, the nature of pattern changes
from maze-like to spots. Modified from ref. 44. Reprinted with permission
from AAAS.
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Ecosystems. In ecology, critical transitions have become a major focus
of research. The existence of alternative attractors has been demon-
strated experimentally in lakes57, and a large body of work now suggests
that alternative stable states separated by critical thresholds also occur
in ecosystems ranging from rangelands to marine systems7,58. Work on
early-warning signals in this field is just emerging. As mentioned
earlier, in dry regions self-organization can lead to particular spatial
patterns under some conditions. Here the complete loss of vegetation is
an important transition, as recovery from the barren state may require
more rain than is needed to preserve the last patches. There is good
evidence to support the idea that a regular pattern characterized by
spots of vegetation signals the proximity of a threshold to such cata-
strophic desertification44. Other studies show how, in line with model
predictions, vegetation-patch size distributions lose their scale-free
structures and become characterized by truncated power laws as a
transition to a barren state is approached42.

Early-warning signals are also being found for destabilization of
exploited fish stocks. It has been shown that harvesting tends to lead
to increased fluctuations in fish populations59. This increase in vari-
ance is most likely due to increased intrinsic growth rates in the
resulting populations, as older age classes are preferentially harvested
and the younger fish have higher overall intrinsic rates of change60.
Such higher growth rates lead to increased nonlinearity as they drive
populations towards the critical transition from a stable to a cyclic or
chaotic regime, as mentioned earlier.
Asthma attacks and epileptic seizures. Abrupt transitions in physi-
ology include epileptic seizures and asthma attacks. In the case of
asthma, it has been shown that human lungs can display a self-organized
pattern of bronchoconstriction that might be the prelude to dangerous
respiratory failure, and which resembles the pattern formation in col-
lapsing desert vegetation1.

Epileptic seizures happen when neighbouring neural cells all start
firing in synchrony. Predicting such seizures far in advance remains
very difficult61. However, before the seizure becomes noticeable
several characteristic changes in neural activity can occur. For instance,
minutes before an epileptic seizure, variance in the electrical signal
recorded by electroencephalography may increase3 (Fig. 5). More
subtle changes (reduced dimensionality of the signal) occur up to
25 min before epileptic seizures, reflecting a continuous increase in
the degree of synchronicity (and thus correlation) between neural
cells62. Also, hours before the seizure, mild energy bursts can occur
in the brain followed by frequent symptomless seizures too small for
the patients to notice2. This resembles patterns of flickering in which
smaller transient excursions to the vicinity of an alternative state
precede the upcoming major shift.
Finance. The prediction of shifts in financial markets is a heavily
researched area. In this field, the discovery of predictability quickly

leads to its elimination, as profit can be made from it, thereby
annihilating the pattern. As a result, although there is always some
predictability that can be exploited by specialists63,64, overall financial
markets are notoriously difficult to predict65. Nonetheless, many
papers in the financial literature show that market dynamics may
contain information presaging major events66–68. For instance, some
events are preceded by measures of increased trade volatility (for
example the spread between the value of put options and the value
of call options66,67), but a ‘volatility calm’ before the abrupt change
can also happen66,69. A prominent volatility-based early-warning
signal in financial markets is the VIX, or ‘fear’ index70,71. There is also
evidence of systematic relationships in variance and first-order auto-
correlation72, although lead–lag relationships tend to be erratic.
Finally, increased spatial coherence may be an early warning of major
transitions. There is evidence that correlation increases across returns
to different stocks in a falling market and patterns embodied in
options prices may serve as a type of early-warning indicator73.

Outlook
As our overview shows, similar early-warning signals can appear in
widely different systems: flickering may occur before epileptic
seizures, the end of a glacial period and in lakes before they shift to
a turbid state; self-organized patterns can signal an imminent transi-
tion in desert vegetation and in asthma; increased autocorrelation
may indicate critical slowing down before all kinds of climatic transi-
tions and in ecosystems; and increased variance of fluctuation may be
a leading indicator of an epileptic seizure or instability in an exploited
fish stock. Some of these complex systems are better understood than
others. However, turning the reasoning around, it could be argued
that the generic character of some early-warning signals suggests that
these transitions may be somehow related to bifurcations, where
universal laws of dynamical systems govern the pattern.

The theoretical basis of the work on early-warning signals in simple
models is quite strong, and the first results from more elaborate models
suggest that similar signals may arise in highly complex systems23.
Nonetheless, more work is needed to find out how robust these signals
are in situations in which spatial complexity, chaos and stochastic
perturbations govern the dynamics. Also, detection of the patterns
in real data is challenging and may lead to false positive results as well
as false negatives. False negatives are situations in which a sudden
transition occurred but no early-warning signals could be detected
in the behaviour before the shift. This can happen for different reasons.
One possibility is that the sudden shift in the system was not preceded
by a gradual approach to a threshold. For instance, it may have
remained at the same distance from the bifurcation point, but been
driven to another stable state by a rare extreme event. Also, a shift that
is simply due to a fast and permanent change of external conditions
(Box 1 Figure a) cannot be detected from early-warning signals. A
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Figure 5 | Subtle changes in brain activity before an epileptic seizure may
be used as an early warning signal. The epileptic seizure clinically detected
at time 0 is announced minutes earlier in an electroencephalography (EEG)
time series by an increase in variance. Adapted by permission from
Macmillan Publishers Ltd: Nature Medicine (ref. 3), copyright 2003.
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Figure 4 | Critical slowing down indicated by an increase in lag-1
autocorrelation in climate dynamics. We show the period preceding the
transition from a greenhouse state to an icehouse state on the Earth 34 Myr
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grey line. The horizontal dashed arrow shows the width of the moving
window used to compute the autocorrelation. Modified from ref. 22.
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second class of false negatives may arise from the statistical difficulty of
picking up the early-warning signal. For instance, the detection of
increased autocorrelation may require long time series74. A third
difficulty arises if the external regime of perturbations changes over
time. This may distort or counteract the expected signals. False posi-
tives occur if a supposed early-warning signal is not the result of
approaching a bifurcation. This may happen by chance or may result
from a confounding trend within the system or in the external regime
of perturbations.

Importantly, most of the indicators we have identified signal a
wide class of impending transitions in complex systems. The same
signals may even occur, albeit in a less pronounced way, as the system
approaches a threshold that is not related to catastrophic bifurcations
(Box 1 Figure b)27. This has been shown for critical slowing down16,
and may also be true for autocorrelation and variance. Nonetheless,
such non-catastrophic thresholds are related to the more spectacular
catastrophic ones (Box 1), and systems may in fact move from one
type of threshold to another. In conclusion, most early-warning
signals are indicators of proximity to a broad class of thresholds,
where small forces can cause major changes in the state of a complex
system.

The idea that critical transitions across a range of systems may be
related in the sense that they can be described by similar equations,
implying similar possible bifurcations and early-warning signals,
implies an exciting opportunity for connecting work across disciplines.
However, there are many challenges to be overcome. For instance,
filtering techniques for time series75 are necessary to increase the sensi-
tivity of indicators while preventing false positives22, but results depend
on parameter choices in filtering22,23. Therefore, it would be useful to
build a set of reliable statistical procedures to test whether an increase in
autocorrelation, for example, is significant. We note also that most of
the signals we have discussed should still be interpreted in a relative
sense. For instance, although autocorrelation is predicted to approach
unity at a fold bifurcation, measurement noise will tend to reduce
correlations. Also, perturbations will often trigger a transition well
before a bifurcation point is reached. Thus, although a trend in the
indicators may serve as a warning, the actual moment of a transition
remains difficult to predict. A key issue when it comes to practical
application is the question of whether a signal can be detected suffi-
ciently early for action to be taken to prevent a transition or to prepare
for one25. Understanding spatial early-warning signals better might be
particularly useful in this respect, as a spatial pattern contains much
more information than does a single point in a time series, in principle
allowing shorter lead times76.

In any case, generic early-warning signals will remain only one of
the tools we have for predicting critical transitions. In systems in
which we can observe transitions repeatedly, such as lakes, range-
lands or fields such as physiology, we may empirically discover where
the thresholds are. Nonetheless, some extremely important systems,
such as the climate or ocean circulation, are singular and afford us
limited opportunity to learn by studying many similar transitions.
Also, we are far from being able to develop accurate models to predict
thresholds in most complex systems, ranging from cells to organisms,
ecosystems or the climate. We simply do not understand all the
relevant mechanisms and feedbacks sufficiently well in most cases.
The generic character of the early-warning signals we have discussed
here is reason for optimism, as they occur largely independently of
the precise mechanism involved. Thus, if we have reasons to suspect
the possibility of a critical transition, early-warning signals may be a
significant step forwards when it comes to judging whether the prob-
ability of such an event is increasing.
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